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Replicated Abstract Data Types (RADTs)

= Replicated Data Structures

+ Optimistic Operations
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Replicated Growable Arrays (RGAs)
= Replicated Orcdered Objects
+ Optimistic {/nsert, Delete, Update}
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Operation Commutativity

The condition that €V € ry pair of COnCUITent operations are commutative!!
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“But,itis difficult to make £VETY PAIT of
concurrent |nS€I't/ DEIEtE operations commute”



RG AS for Operation Commutativity an
Intention

Precedence = whose intention has higher priority?
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The same intentions:

“Insert a new object next to the 1t object”

precedence of < precedence of
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A pair f concurrent operations

Alx[y B Alyix B
Precedence between d pair of concurrent operations

Insert(l, ccy”) < Insert(l, “X”) Insert(l, ch”) < Insert(l, “y”)

Define ONE@ precedence for consistency!!




Precedence among multiple pairs of concurrent operations?

Happened-before operations

Insert(1, “x™) < Insert(1, “y”)

Concurrent operations

Insert(1, “y”) < Insert(1, “z”)
Insert(1, “z”) < Insert(1, “x”)
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Insert(1, “x”) < Insert(1, “z”)

Precedence Transitivity (PT)

Allow @VEerY site to execute operations in a different order (Not a total order)

=» Operation Commutativity
Make d pair of concurrent operations COmMmute == Precedence

> Make EVE I'y pal I' of concurrent operations COMmute

=>» Precedence Transitivity




Present a solution to achieve Operation commutativity

without

History of operations,

Deriving total order of objects Totally ordered dense
indexing scheme

Operation Commutativity
= A principle Only for CONCUIrent operations

Precedence Transitivity
> A principle for the relationship among

happened-before and cONcurrent operations




S4V€Ct0r <int ssn, int sid, int sum, int seg>
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SaVector Index (SVI) scheme

Adopt a linked list with a hash table
Hash table ’ ot *
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<10,11> <1,04,2>
3 X

Local operation Remote operation

Preserve INteNtions of remote operations
Boost performance



Concurrent Inserts

<1,0,1,1> <1,1,2,1>
a ......... b

Insert(1, “y”) with <2,2,1,1> ||~
V
Insert(1, “z”) with <2,1,1,1> ||~
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> <2211> > <112,1>




Summary of RGA implementation

A Delete makes a

Concurrent Inserts C
follow transitivity of S4Vectors
Concurrent Updates

,,,,,,,,,,,, > Immutable after an Insert
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“ --------- > Mutable by Update/Delete

A Delete always wins An update




Overwhelming performance of RGAs

Algorithms Local operations Remote operations

RGAs O(N) or T0O(1) 0(1)
ABT O(|H]) O(|H[?)
SDT 0(1) O([H[?) or 50( [H|3)  N: the number of objects or characters,
|H|: the number of operations in history buffer,
TTF O(N) or ¥O(1) O(|H|2+N) ¥: local pointer operations,
1: the caret operations,
WOOT #O(NZ) and 'HO(]) #O(N3) and ﬂO(N) §: worst-case complexity,
#: WOOT insertion operation,
Treedoc O(IogN) O(IOgN) 1: WOOT deletion operation.
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Experiments on Pentium 4 2.8Ghz
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Which performance is important

+ for SCalability?
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I_{GAS

Consistency of Insert / Delete  Intention preservation

Precedence

. SVI scheme
Transitivity

Good performance  Scalability



