
Replicated Abstract Data Types

Commutative

Replicated

Data

Types

Replicated

Abstract

Data

Types

Since 2006, I proposed Until now,

have been introduced

3

Replicated Abstract Data Types (RADTs)

= Replicated Data Structures

+ Optimistic Operations

4

Replicated Growable Arrays (RGAs)

= Replicated Ordered Objects

+ Optimistic {Insert, Delete, Update}

Concurrent Insert/Delete

affect (interfere) each other

more likely

1 2 3 4

a b c d

1 2 3 4

a x y d

Update(2, “x”)

Update(3, “y”)

1 2 3 4

a b c d

Insert(1, “x”) Delete(3)

1 2 3 4 5

a x b c d

Delete(3)

1 2 3 4

a x c d

1 2 3

a b d

Insert(1, “x”)
1 2 3 4

a x b d

Concurrent Inserts/Deletes distort the intentions of other operations

Operation Commutativity

“It is not difficult to make a pair of concurrent operations commute”

“But, it is difficult to make every pair of

The condition that every pair of concurrent operations are commutative!!

concurrent Insert/Delete operations commute”

Insert(0, “Is”)

Update(4, “boy?”)

Delete(2)

Insert(0, “Is”) Update(4, “boy?”) Delete(2)

Insert(0, “Is”)

Update(4, “boy?”)

Delete(2) Insert(0, “Is”)

Update(4, “boy?”)

Delete(2)

Insert(0, “Is”)

Update(4, “boy?”)

Delete(2)

Insert(0, “Is”)

Update(4, “boy?”)

Delete(2) Insert(0, “Is”)

Update(4, “boy?”)

Delete(2)

Precedence = whose intention has higher priority?

 for Operation Commutativity and

 Intention

1 2

A B

Insert(1, “x”)

Insert(1, “y”)

1 2 3

A x B

< precedence of Insert(1, “x”) Insert(1, “y”) precedence of

The same intentions:

“Insert a new object next to the 1st object”

1 2 3 4

A y x B

Happened-before operations

RGAs

Precedence between a pair of concurrent operations

1 2

A B

Insert(1, “x”)

Insert(1, “y”)

1 2 3 4

A x y B

1 2 3 4

A y x B

< Insert(1, “x”) Insert(1, “y”) < Insert(1, “x”) Insert(1, “y”)

A pair of concurrent operations

Define one precedence for consistency!!!

Precedence among multiple pairs of concurrent operations?

1 2

A B

Insert(1, “x”)

Insert(1, “y”)

1 2 3

A x B
1 2

A B

Insert(1, “z”)

Insert(1, “x”) Insert(1, “y”)

Insert(1, “z”)

<

Insert(1, “y”)

Insert(1, “z”) Insert(1, “x”)

Concurrent operations

<
<

Insert(1, “z”)

Insert(1, “y”)

Insert(1, “x”) Insert(1, “z”)

Insert(1, “y”)

Insert(1, “x”)

1 2 3

A x B

1 2 3 4

A y x B

1 2 3 4 5

A z y x B

1 2 3

A z B

1 2 3 4

A x z B

1 2 3 4 5

A y x z B

Happened-before operations

HB

Con

Con

Recall

Precedence Transitivity (PT)
Allow every site to execute operations in a different order (Not a total order)

Insert(1, “x”) Insert(1, “y”) <
Insert(1, “z”) Insert(1, “y”) <

Insert(1, “x”) Insert(1, “z”) <

Make a pair of concurrent operations commute

 Operation Commutativity

 Make every pair of concurrent operations commute

 Precedence

 Precedence Transitivity

Significance of Precedence Transitivity (PT)

Totally ordered dense

indexing scheme
Deriving total order of objects

 A principle for the relationship among

 happened-before and concurrent operations

Operation Commutativity
 A principle only for concurrent operations

Present a solution to achieve operation commutativity

without

Precedence Transitivity

or

History of operations,

S4Vector <int ssn, int sid, int sum, int seq>

ssn: session number

sid: site ID

sum: sum of a version vector

seq: reserved for purging tombstones

<1,0,1,1>

<1,0,2,2>

<1,1,2,1>

①

② ③

<2,0,1,1>

<
<

<

Happened-before

Concurrent

<1,0,1,1>

<1,0,2,2> <1,1,2,1>

…

Site 0 Site 1

A new session begins

 with the same initial data structures

<2,0,1,1>

Adopt a linked list
Hash table

<1,0,1,1>

a

<1,0,4,2>

x

<1,2,2,1>

b

<1,1,1,1>

c

S4Vector Index (SVI) scheme

Preserve intentions

Boost performance

Insert(<1,0,1,1>, “x”)

Remote operation

of remote operations

Insert(1, “x”) with <1,0,4,2>
Local operation

with a hash table

Concurrent Inserts

Insert(1, “x”)

Insert(1, “y”)

Insert(1, “z”)

with <2,0,2,1>

with <2,1,1,1>

with <2,2,1,1>

Insert(<1,0,1,1>, “z”)

Insert(<1,0,1,1>, “y”)

Insert(<1,0,1,1>, “x”)

<1,1,2,1>

b

<1,0,1,1>

a

① ② ③

<
<

Summary of RGA implementation

A Delete makes a tombstone

A Delete always wins An update

Concurrent Inserts

Concurrent Updates

<1,0,1,1>

<1,0,1,1>

a

Immutable after an Insert

Mutable by Update/Delete

follow transitivity of S4Vectors

Overwhelming performance of RGAs

Algorithms Local operations Remote operations

RGAs O(N) or †O(1) O(1)

ABT O(|H|) O(|H|2)

SDT O(1) O(|H|2) or §O(|H|3)

TTF O(N) or ‡O(1) O(|H|2+N)

WOOT #O(N2) and ¶O(1) #O(N3) and ¶O(N)

Treedoc O(logN) O(logN)

Experiments on Pentium 4 2.8Ghz

N: the number of objects or characters,

|H|: the number of operations in history buffer,

†: local pointer operations,

‡: the caret operations,

§: worst-case complexity,

#: WOOT insertion operation,

¶: WOOT deletion operation.

1~2 μs 3 μs 20 μs
Local operations with 400 objects Local operations with 3200 objects Remote operations

2 sites 32 sites

Remote operations

Local op
erations

Re
m

ot
e

op
er

at
io

ns

Local operations

Which performance is important

for Scalability?

O(1)

RGAs

Precedence

Transitivity

Good performance Scalability

Consistency of Insert / Delete

+ SVI scheme

Intention preservation

