Repllcated Abstract Data Types

Kick-off meeting of ConcoRDanT project

Hyun-Gul Roh
17, Nov, 2010

Until now, Since 2006, | proposed

Commutative Replicated
Replicated | Abstract
Data Data
Types : Types

have been introduced

Replicated Abstract Data Types (RADTs)

= Replicated Data Structures

+ Optimistic Operations

v

REPUCAEENENNY” . = ?
Fixed-sized © A\ Replicated§

“'

S &\ Hash Tables |

aeagll "I | (RHTs) 4

Growable Arrays |
(RGAs)

Replicated Growable Arrays (RGAs)
= Replicated Orcdered Objects
+ Optimistic {/nsert, Delete, Update}

Replli [cafien
F f(f /Ffr
AlFaYS
(REAS)

Replicated.

| Growable Arrays |
(RGASs) ,;”

Concurrent |nse|"t/De|Ete more likely
affect (interfere) .o

Delete(3)

Update(2, “x”)

1 2 3 4 1 2 3 4

2y d

1 2 3 1 2 3 4 5

alb/djlalx bleld
ez

Update(3, “y”)

1 2 3 4

1 2 3 4

alxled
Concurrent Inserts/Deletes d i StO I't the | te N t JIONS of other operations

Operation Commutativity

The condition that €V € ry pair of COnCUITent operations are commutative!!

Insert(0, “Is”)

Delete(2)

Update(4, “boy?”)

Update(4, “boy?”)

Delete(2)

Delete(2) Insert(0, “Is™)

_
(Update(4, “boy?”)

Update(4, “boy?”) ‘ Insert(0, ““Is™)

P I I —

Delete(2) Delete(2)

—
Delete(2)

Update(4, “boy?”)

Insert(0, ““Is™)

Insert(0, ““Is”)

T —

Insert(0, <Is””) Delete(2)

Update(4, “boy?”) Update(4, “boy?”)

(44 . .
It is n Ot dlfﬁCU lt to make a pal r of concurrent operations commute

29

“But,itis difficult to make £VETY PAIT of
concurrent |nS€I't/ DEIEtE operations commute”

RG AS for Operation Commutativity an
Intention

Precedence = whose intention has higher priority?

Alx BB dAlyx B

oa »

\ sy

The same intentions:

“Insert a new object next to the 1t object”

precedence of < precedence of

y--n

A pair f concurrent operations

Alx[y B Alyix B
Precedence between d pair of concurrent operations

Insert(l, ccy”) < Insert(l, “X”) Insert(l, ch”) < Insert(l, “y”)

Define ONE@ precedence for consistency!!

Precedence among multiple pairs of concurrent operations?

Happened-before operations

Insert(1, “x™) < Insert(1, “y”)

Concurrent operations

Insert(1, “y”) < Insert(1, “z”)
Insert(1, “z”) < Insert(1, “x”)

1 2 3 1 2 3
ALz BJAXB
1 2 3 4 1 2 3 4
Alxiz BJALYIXB

Insert(1, “x”) < Insert(1, “z”)

Precedence Transitivity (PT)

Allow @VEerY site to execute operations in a different order (Not a total order)

=» Operation Commutativity
Make d pair of concurrent operations COmMmute == Precedence

> Make EVE I'y pal I' of concurrent operations COMmute

=>» Precedence Transitivity

Present a solution to achieve Operation commutativity

without

History of operations,

Deriving total order of objects Totally ordered dense
indexing scheme

Operation Commutativity
= A principle Only for CONCUIrent operations

Precedence Transitivity
> A principle for the relationship among

happened-before and cONcurrent operations

S4V€Ct0r <int ssn, int sid, int sum, int seg>

Site 0 Site 1
oL <]-) O) 1) 1>
<1,0,2,2> <1,1,2,1> /\
: - < 1 O 2 2>« ! appened -before
A new sessior.1 begins . o Concurrent /\
with the same initial data structures S < 1) 1) 2 ’]. > o
<2,0,1,1> ©) /\@

SaVector Index (SVI) scheme

Adopt a linked list with a hash table
Hash table ’ ot *

o,

; N
<10,11> <1,04,2>
3 X

Local operation Remote operation

Preserve INteNtions of remote operations
Boost performance

Concurrent Inserts

<1,0,1,1> <1,1,2,1>
a b

Insert(1, “y”) with <2,2,1,1> ||~
V
Insert(1, “z”) with <2,1,1,1> ||~

ONORE)

> <2211> > <112,1>

Summary of RGA implementation

A Delete makes a

Concurrent Inserts C
follow transitivity of S4Vectors
Concurrent Updates

,,,,,,,,,,,, > Immutable after an Insert

4

“ --------- > Mutable by Update/Delete

A Delete always wins An update

Overwhelming performance of RGAs

Algorithms Local operations Remote operations

RGAs O(N) or T0O(1) 0(1)
ABT O(|H]) O(|H[?)
SDT 0(1) O([H[?) or 50([H|3) N: the number of objects or characters,
|H|: the number of operations in history buffer,
TTF O(N) or ¥O(1) O(|H|2+N) ¥: local pointer operations,
1: the caret operations,
WOOT #O(NZ) and 'HO(]) #O(N3) and ﬂO(N) §: worst-case complexity,
#: WOOT insertion operation,
Treedoc O(IogN) O(IOgN) 1: WOOT deletion operation.

OCADperationsewith 3a0Wogetts

128 s

Experiments on Pentium 4 2.8Ghz

2 sites 32 sites

Which performance is important

+ for SCalability?

<]

I_{GAS

Consistency of Insert / Delete Intention preservation

Precedence

. SVI scheme
Transitivity

Good performance Scalability

