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Summary 

• Wait-free collaborative editing solution 

• Eventually consistent (CRDT) 

• Sequence 

• Separates concurrently-inserted subsequences 
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System model 

Preguiça, Shapiro, Zawirski - Treedoc 3 

s1 

s2 

s3 

• Dynamic set of sites (replicas) 
• No permanent crashes 



System model 
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• Operation Generation & Apply 
• Wait-free, immediate Apply 
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System model 
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• Operation propagation 
• Reliable causal multicast 
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System model 
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• Operation replay: 
• Receive and Apply 

f 

f 

f 



System model 
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• Concurrent operations commute 
• Replicas converge 
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Treedoc – Sequential Buffer CRDT 
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• Application view: 

– Sequential buffer of atoms 

– buffer.insert(index, atom) 

– buffer.remove(index) 

– Inconvenient for replication 



Treedoc – Sequential Buffer CRDT 
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• Application view: 

– Sequential buffer of atoms 

– buffer.insert(index, atom) 

– buffer.remove(index) 

– Inconvenient for replication 



Treedoc – Sequential Buffer CRDT 
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• Application view: 

– Sequential buffer of atoms 

– buffer.insert(index, atom) 

– buffer.remove(index) 

– Inconvenient for replication 
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Treedoc – Sequential Buffer CRDT 
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• Application view: 

– Sequential buffer of atoms 

– buffer.insert(index, atom) 

– buffer.remove(index) 

– Inconvenient for replication 

• Internal state representation: 

– Grow-only tree of atoms 

– tree.insert(PosID, atom) 

– tree.remove(PosID) 

– Stable, unique positions PosID 

– Commutativity 
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Total order: 
Infix traversal 

Lookup 
node 

index(T)= 0 

PosID(T)= <00> 



Operations on Treedoc: insert 

buffer.insert(index, atom)  ->  tree.insert(PosID, atom) 

– Create a new leaf node PosID  such that 
it corresponds to index (it is always possible) 

– Put an atom there 

– Propagate to other replicas 

e.g. buffer.insert(4, “S”) 
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Operations on Treedoc: insert 

buffer.insert(index, atom)  ->  tree.insert(PosID, atom) 

– Create a new leaf node PosID  such that 
it corresponds to index (it is always possible) 

– Put an atom there 

– Propagate to other replicas 

e.g. buffer.insert(4, “S”) 

   tree.insert(<100>, “S”) 
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Operations on Treedoc: conc. insert 
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Operations on Treedoc: conc. insert 
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• Always include unique ID in inserted tree node 
– In case of “conflict” -> resolves into arbitrary order 

• Could be a unique site ID 



Treedoc: A Layered Tree 
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• Treedoc composed of layers: 

– Compact binary tree 

– Sparse site ID layer 

• Site ID denotes “private space” 

– Space owner uses compact tree 

– Others create new private space 

– Separates concurrent inserts 
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Treedoc: Independent Private Spaces 
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Operations on Treedoc: remove 
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• Remove atom 

• Keep unused node 

    (alternative designs possible) 

• Ignore in application view 

 e.g. buffer.remove(1) 
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Operations on Treedoc: remove 
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• Remove atom 

• Keep unused node 

    (alternative designs possible) 

• Ignore in application view 

 e.g. buffer.remove(1) 
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Why Is Tree Rebalance Required? 
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Tree may become unbalanced 
Unused nodes waste space 
Number of site IDs increases 
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• Unused nodes discarded 
• Minimal tree maintaining  

identical order 
• Single space – compact tree 



Measurements: GWB Wikipedia page 
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[Letia 09] 
old impl. 

Sequential replay of Wikipedia traces 
(atom: paragraph) 

 



Measurements: GWB Wikipedia page 
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Rebalance is beneficial, but non-commutative with edits. 
Identifiers are changed => consensus is required. 

Consensus => blocking operations, difficult in dynamic system. 

[Letia 09] 
old impl. 



The Core-Nebula Architecture 
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Idea: limit consensus to a smaller number of sites 
 

Sites are divided into two disjoint sets: 

CORE 
 

• a group managed by 
membership protocol 

• stable  
• both perform tree operations 

& agree on tree rebalance 
• easier agreement 

NEBULA 
 

• sites freely join and leave 
• dynamic 
• perform tree operations only 
• Informed about rebalance, 

perform catch-up protocol 
to integrate conc. changes 



The Core-Nebula: catch-up 
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Current status 

• Prototype core-nebula implementation: 
– 1 core node, simplified communication 
– 5 KLOC Java code (1.5 KLOC core-nebula code) 
– Test suite (boundary cases) 

Work in progress: 
– Core-nebula: evaluation, proof 

   generalization? 
– Combining private spaces and core-nebula 

(verification) 
– Optimization of PosIDs encoding 
– More theory on private spaces? 
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Summary 

• Wait-free collaborative editing solution 

• Eventually consistent (CRDT) 

• Sequence 

• Separates concurrently-inserted subsequences 
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