Treedoc

A Commutative Replicated Data Type
Designed for Cooperative Text Editing

Nuno Preguica (UNL)
Marc Shapiro (INRIA / LIP6)
Marek Zawirski (INRIA / LIP6)

STREAMS kick-off meeting
29 -30 November, 2010, Nancy

Summary

Wait-free collaborative editing solution
Eventually consistent (CRDT)

Sequence

Separates concurrently-inserted subsequences

System model

* Dynamic set of sites (replicas)
* No permanent crashes

Preguica, Shapiro, Zawirski - Treedoc

System model

* QOperation Generation & Apply
* Wait-free, immediate Apply

_ J

Preguica, Shapiro, Zawirski - Treedoc

System model

* QOperation propagation

~N

* Reliable causal multicast

_

J

Preguica, Shapiro, Zawirski - Treedoc

System model

* QOperation replay:
* Receive and Apply
_

Preguica, Shapiro, Zawirski - Treedoc

System model

* Concurrent operations commute
* Replicas converge

]

Preguica, Shapiro, Zawirski - Treedoc 7

Treedoc — Sequential Buffer CRDT

* Application view: 5
— Sequential buffer of atoms
— buffer.insert(index, atom)

1 2 3 4 5
RIEJDJOJC

— buffer.remove(index)
— Inconvenient for replication

Preguica, Shapiro, Zawirski - Treedoc

Treedoc — Sequential Buffer CRDT

* Application view:

— Sequential buffer of atoms
— buffer.insert(index, atom)
— buffer.remove(index)

— Inconvenient for replication

Preguica, Shapiro, Zawirski - Treedoc 9

Treedoc — Sequential Buffer CRDT

* Application view: 5
— Sequential buffer of atoms
— buffer.insert(index, atom)

3 4 5
1 2 3 4 5 6
RIEJEJDJO]C

(@)

— buffer.remove(index)
— Inconvenient for replication

Preguica, Shapiro, Zawirski - Treedoc 10

Treedoc — Sequential Buffer CRDT

index(T)=0

* Application view:

— Sequential buffer of atoms

— buffer.insert(index, atom)
Total order:

— buffer.remove(index) Infix traversal

— Inconvenient for replication

* Internal state representation:
— Grow-only tree of atoms
— tree.insert(PosID, atom)
— tree.remove(PosID)

— Stable, unique positions PosID
— Commutativity PosID(T)= <00>

Preguica, Shapiro, Zawirski - Treedoc 11

Operations on Treedoc: insert

buffer.insert(index, atom) -> tree.insert(PosID, atom)

— Create a new leaf node Pos/ID such that
it corresponds to index (it is always possible)

— Put an atom there
— Propagate to other replicas
e.qg. buffer.insert(4, “S”)

Preguica, Shapiro, Zawirski - Treedoc 12

Operations on Treedoc: insert

buffer.insert(index, atom) -> tree.insert(PosID, atom)

— Create a new leaf node Pos/ID such that
it corresponds to index (it is always possible)

— Put an atom there

— Propagate to other replicas

e.qg. buffer.insert(4, “S”)
tree.insert(<100>, “S”)

0 1 2 3 4 5 6 7
TIRJEJE]s]Dfo]c

Preguica, Shapiro, Zawirski - Treedoc 13

Operations on Treedoc: conc. insert
Replica 1 Replica 2

0 1

Preguica, Shapiro, Zawirski - Treedoc 14

Operations on Treedoc: conc. insert
Replica 1 Replica 2

0 1

0 1 2 3 4
R I!/G
sitel || site2 sitel || site2
<llesitel> <l1lesjte2>

* Alwaysinclude unique ID in inserted tree node
— In case of “conflict” -> resolves into arbitrary order

* Could be a uniquessite ID

Preguica, Shapiro, Zawirski - Treedoc 15

Treedoc: A Layered Tree

* Treedoc composed of layers:
— Compact binary tree
— Sparse site ID layer

* Site ID denotes “private space”

— Space owner uses compact tree
— Others create new private space

— Separates concurrent inserts

Preguica, Shapiro, Zawirski - Treedoc 16

Treedoc: Independent Private Spaces

sjulBlTIRIE]efs] !

Preguica, Shapiro, Zawirski - Treedoc

17

Operations on Treedoc: remove

* Remove atom

* Keep unused node
(alternative designs possible)

* |gnore in application view

e.g. buffer.remove(1)
RIEJA

Preguica, Shapiro, Zawirski - Treedoc

18

Operations on Treedoc: remove

* Remove atom
* Keep unused node
(alternative designs possible)

* |gnore in application view site0 |

e.g. buffer.remove(1) Ig 1
EJA

Preguica, Shapiro, Zawirski - Treedoc 19

Why Is Tree Rebalance Required?

Tree may become unbalanced Access time grows
Unused nodes waste space
Number of site IDs increases

PosID length grows
(communication cost)

Unused nodes discarded

 Minimal tree maintaining
identical order

* Single space — compact tree

Preguica, Shapiro, Zawirski - Treedoc 20

Measurements: GWB Wikipedia page

300

[Letia 09]
old impl.
250 .
E 200 +
L1h]
E
= 150 |
S
©
g
§ 100 +]
) W
0 1

50 100 150 200 250 300
Number of operations x1000

Sequential replay of Wikipedia traces
(atom: paragraph)

Measurements: GWB Wikipedia page

1600

1400

1200

1000

800 -

Treedoc size [KB]

600 -

400 +

200 -

0

Number of operations x1000

50 100 150 200 250 300

[Letia 09]
old impl.

Rebalance is beneficial, but non-commutative with edits.
|dentifiers are changed => consensus is required.
Consensus => blocking operations, difficult in dynamic system.

The Core-Nebula Architecture

ldea: limit consensus to a smaller number of sites

Sites are divided into two disjoint sets:

CORE

a group managed by
membership protocol

stable

both perform tree operations
& agree on tree rebalance

easier agreement

NEBULA

sites freely join and leave
dynamic
perform tree operations only

Informed about rebalance,
perform catch-up protocol
to integrate conc. changes

The Core-Nebula: catch-up

core
replica

nebula
replica

— [

Preguica, Shapiro, Zawirski - Treedoc 24

Current status

* Prototype core-nebula implementation:
— 1 core node, simplified communication
— 5 KLOC Java code (1.5 KLOC core-nebula code)
— Test suite (boundary cases)

Work in progress:

— Core-nebula: evaluation, proof
generalization?

— Combining private spaces and core-nebula
(verification)

— Optimization of PosIDs encoding
— More theory on private spaces?

Summary

Wait-free collaborative editing solution
Eventually consistent (CRDT)

Sequence

Separates concurrently-inserted subsequences

