
Treedoc
A Commutative Replicated Data Type
Designed for Cooperative Text Editing

Nuno Preguiça (UNL)
Marc Shapiro (INRIA / LIP6)
Marek Zawirski (INRIA / LIP6)

STREAMS kick-off meeting
29 -30 November, 2010, Nancy

Summary

• Wait-free collaborative editing solution

• Eventually consistent (CRDT)

• Sequence

• Separates concurrently-inserted subsequences

Preguiça, Shapiro, Zawirski - Treedoc 2

System model

Preguiça, Shapiro, Zawirski - Treedoc 3

s1

s2

s3

• Dynamic set of sites (replicas)
• No permanent crashes

System model

Preguiça, Shapiro, Zawirski - Treedoc 4

G+A s1

s2

s3

• Operation Generation & Apply
• Wait-free, immediate Apply

f

System model

Preguiça, Shapiro, Zawirski - Treedoc 5

G+A s1

s2

s3

• Operation propagation
• Reliable causal multicast

f

System model

Preguiça, Shapiro, Zawirski - Treedoc 6

G+A

A

A

s1

s2

s3

• Operation replay:
• Receive and Apply

f

f

f

System model

Preguiça, Shapiro, Zawirski - Treedoc 7

G+A

A

A G+A

G+A

A A

A

A

s1

s2

s3

• Concurrent operations commute
• Replicas converge

f

f

f g

h

g

g

h

h

Treedoc – Sequential Buffer CRDT

I

Preguiça, Shapiro, Zawirski - Treedoc 8

0

T

1

R

2

E

3 4

D

5

O C

• Application view:

– Sequential buffer of atoms

– buffer.insert(index, atom)

– buffer.remove(index)

– Inconvenient for replication

Treedoc – Sequential Buffer CRDT

I

Preguiça, Shapiro, Zawirski - Treedoc 9

0

T

1

R

2

E

2.5?

E

3

D

4

O

5

C

• Application view:

– Sequential buffer of atoms

– buffer.insert(index, atom)

– buffer.remove(index)

– Inconvenient for replication

Treedoc – Sequential Buffer CRDT

I

Preguiça, Shapiro, Zawirski - Treedoc 10

0

T

1

R

2

E

3

E

4

D

5

O

6

C

• Application view:

– Sequential buffer of atoms

– buffer.insert(index, atom)

– buffer.remove(index)

– Inconvenient for replication

3 4 5

Treedoc – Sequential Buffer CRDT

I

Preguiça, Shapiro, Zawirski - Treedoc 11

0

T

1

R

2

E

3

E

4

D

5

O

6

C

• Application view:

– Sequential buffer of atoms

– buffer.insert(index, atom)

– buffer.remove(index)

– Inconvenient for replication

• Internal state representation:

– Grow-only tree of atoms

– tree.insert(PosID, atom)

– tree.remove(PosID)

– Stable, unique positions PosID

– Commutativity

T

R

E

E

D

O

C

0 1

0 1

1 0

Total order:
Infix traversal

Lookup
node

index(T)= 0

PosID(T)= <00>

Operations on Treedoc: insert

buffer.insert(index, atom) -> tree.insert(PosID, atom)

– Create a new leaf node PosID such that
it corresponds to index (it is always possible)

– Put an atom there

– Propagate to other replicas

e.g. buffer.insert(4, “S”)

Preguiça, Shapiro, Zawirski - Treedoc 12

T

R

E

E

D

O

C

0 1

0 1

1 0

T R E E D O C

0 1 2 3 4 5 6

Operations on Treedoc: insert

buffer.insert(index, atom) -> tree.insert(PosID, atom)

– Create a new leaf node PosID such that
it corresponds to index (it is always possible)

– Put an atom there

– Propagate to other replicas

e.g. buffer.insert(4, “S”)

 tree.insert(<100>, “S”)

Preguiça, Shapiro, Zawirski - Treedoc 13

T

R

E

E

D

O

C

0 1

0 1

1 0

S

0

T R E E D O C S

0 1 2 3 4 5 6 7

Operations on Treedoc: conc. insert

Preguiça, Shapiro, Zawirski - Treedoc 14

T

R

E

0 1

T R E

0 1 2 3 C

T

R

E

0 1

E

Replica 1 Replica 2

E C E
C

1 1

? <11>

<11>

Operations on Treedoc: conc. insert

Preguiça, Shapiro, Zawirski - Treedoc 15

T

R

E

0 1

T R E

0 1 2 3

T

R

E

0 1

Replica 1 Replica 2

E C

1 1

<11●site1> C E
site1 site2

C E
site1 site2

4

<11●site2>

• Always include unique ID in inserted tree node
– In case of “conflict” -> resolves into arbitrary order

• Could be a unique site ID

Treedoc: A Layered Tree

Preguiça, Shapiro, Zawirski - Treedoc 16

T R E C E S !

T

R

E

0 1

1

C E
site1 site2

site0

S

• Treedoc composed of layers:

– Compact binary tree

– Sparse site ID layer

• Site ID denotes “private space”

– Space owner uses compact tree

– Others create new private space

– Separates concurrent inserts
site0

!

1 1

Treedoc: Independent Private Spaces

Preguiça, Shapiro, Zawirski - Treedoc 17

T

R

E

0 1

1

E
site2

site0

S

1

S

U

B

0

1

1

!

1

T R E E S ! S U B

Operations on Treedoc: remove

Preguiça, Shapiro, Zawirski - Treedoc 18

T

R

E

0 1

T R E A

1

A

• Remove atom

• Keep unused node

 (alternative designs possible)

• Ignore in application view

 e.g. buffer.remove(1)

site0

Operations on Treedoc: remove

Preguiça, Shapiro, Zawirski - Treedoc 19

T E

0 1

T E A

1

A

• Remove atom

• Keep unused node

 (alternative designs possible)

• Ignore in application view

 e.g. buffer.remove(1)

site0

Why Is Tree Rebalance Required?

Preguiça, Shapiro, Zawirski - Treedoc 20

Tree may become unbalanced
Unused nodes waste space
Number of site IDs increases

C

R

D

0 1

1

s
site1 site2

site3

! site3

T

1

Access time grows

PosID length grows
(communication cost)

C

R

D

T

s

!
0 1

0 1

0

1

site*

rebalance

• Unused nodes discarded
• Minimal tree maintaining

identical order
• Single space – compact tree

Measurements: GWB Wikipedia page

Preguiça, Shapiro, Zawirski - Treedoc 21

[Letia 09]
old impl.

Sequential replay of Wikipedia traces
(atom: paragraph)

Measurements: GWB Wikipedia page

Preguiça, Shapiro, Zawirski - Treedoc 22

Rebalance is beneficial, but non-commutative with edits.
Identifiers are changed => consensus is required.

Consensus => blocking operations, difficult in dynamic system.

[Letia 09]
old impl.

The Core-Nebula Architecture

Preguiça, Shapiro, Zawirski - Treedoc 23

Idea: limit consensus to a smaller number of sites

Sites are divided into two disjoint sets:

CORE

• a group managed by
membership protocol

• stable
• both perform tree operations

& agree on tree rebalance
• easier agreement

NEBULA

• sites freely join and leave
• dynamic
• perform tree operations only
• Informed about rebalance,

perform catch-up protocol
to integrate conc. changes

The Core-Nebula: catch-up

Preguiça, Shapiro, Zawirski - Treedoc 24

F

O

1

site1

F

O

O

0 1

site*

rebalance

O

1

F

O

1

site1

O

1

T
site2

0

F

O

O

0 1

site*

catch-up

T
site2

0

transformation algorithm

core
replica

nebula
replica

Current status

• Prototype core-nebula implementation:
– 1 core node, simplified communication
– 5 KLOC Java code (1.5 KLOC core-nebula code)
– Test suite (boundary cases)

Work in progress:
– Core-nebula: evaluation, proof

 generalization?
– Combining private spaces and core-nebula

(verification)
– Optimization of PosIDs encoding
– More theory on private spaces?

Preguiça, Shapiro, Zawirski - Treedoc 25

Summary

• Wait-free collaborative editing solution

• Eventually consistent (CRDT)

• Sequence

• Separates concurrently-inserted subsequences

Preguiça, Shapiro, Zawirski - Treedoc 26

