
Controlled conflict
resolution for replicated

document
Stéphane Martin, Mehdi Ahmed-Nacer, Pascal Urso
Score team - Université de Lorraine - CNRS – INRIA

LORIA, Nancy

Concordant/Streams meeting
Nantes France

Collaboration on
Shared document

•  Mutable shared data in distributed system

•  CAP theorem [Brewer 2000]
•  strong Consistency

•  Availability
•  High responsiveness

•  Partition tolerance
•  Mobile - Disconnected work

•  A solution : Optimistic Replication (Eventual consistency)

Optimistic replication

•  A replica per application instance

•  Immediately available for updates

•  Updates sent to other replicas

•  Consistency Model
•  (Strong) Eventual Consistency

•  Replicated merge mechanism
•  Concurrent modifications
•  Possibly “conflicting”

Concurrency Conflicts

Replica A

•  Removes an element

•  Inserts a text

•  Adds a paragraph P

•  Sets a title

•  ...

Replica B

•  Removes the element and re-
adds it (e.g. undo)

•  Inserts another text at the
same position

•  Removes the section P
belongs

•  Sets a title

•  ...

more complexity
=

more conflicts

Proof on ad-hoc complex systems

8op1, op2 2 Op, S is state

•  More different operation èmore complex proof

op1||op2) [op1, op2](s) = [op2, op1](s)

op1||op2) [op1, IT (op2, op1)](s) = [op2, IT (op1, op2)](s)
op 2 Op,

IT (IT (op, op1), IT (op2, op1)) = IT (IT (op, op2), IT (op1, op2))

•  Operational Transformation

•  Commutative Replicated Data Type

8op1, op2 2 Op, S is state

Our proposition

•  Decouples eventual consistency from conflict
resolution

•  Constructs a new data type using simpler one

•  Layered approach
•  Bottom layers for eventual consistency

•  Layers per data type constraint

Conflicts to constraints

Replica A Replica B

Elements are totally ordered

All elements are connected

Only one title

It’s a set

•  Removes an element

•  Inserts a text

•  Adds a paragraph P

•  Sets a title

•  ...

•  Removes the element and re-
adds it (e.g. undo)

•  Inserts another text at the
same position

•  Removes the section P
belongs

•  Sets a title

•  ...

Layered approach
Example : file system data

File System Data

[with unique naming]

Connected Tree

[Reappear]

Set of (absolute path, type)

[File systems identifiers]

Map identifier to content

Register

[Binary files]

Ordered Sequence

[Text files]

Set of (element, position)

[lines or characters]

Connected Tree

[Skip]

Text managed with
Operational

Transformation

Stateless Layers

•  Replication layer in charge of merge
•  Adaptation layer computes a lookup
•  Straight forward strong eventual consistency

•  Fits state-based replication

Incremental Layers

•  Adaptation layer state is updated

•  No concurrency management in adaptation layer
•  “all local”

•  Fits operation-based replication

•  Proof is more difficult. (proof that it’s equivalent of stateless layers)

Adaptation layer example:
Trees policies

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c

Tree

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c
...
............
............
.....

Rep.1

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

Rep.2

Fig. 8. Concurrent operations in replicated trees

....................................

....................................

....................................

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

a

c

i) Skip

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

ii) Reappear

....................................

..

....................................

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

a c

c

iii) Root

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

....................................

....................................

....................................

a

c

iv) Compact

Fig. 9. Different behavior for resolving conflict in trees

each time the set is modified, this tree lookup is eventually
consistent. Of course, re-computing the whole tree lookup is
not efficient, and we can define incremental version of the four
policies. We present here the reappear and root incremental
policies3.

1) Reappear Policy: The reappear algorithm presented in
Figure 10, uses a set of “ghosts”. When an orphan node
is added in the inner set, the policy recreates its ancestors
as ghosts by browsing through the path. When a node with
children is removed in the inner set, this node is not removed in
the tree. But it is just marked as a ghost. Ghosts are unmarked
when the node path is re-added in the set. All leaf nodes
marked as ”ghost” are recursively removed until there was
nothing left. In our example b is a ghost (see Fig. 9ii)).

The update function for the reappear algorithm is written
in figure 10. The modify function converts a path of lookup
to a path for inner set. By chance, in this policy the path is
not modified. Thus, add operation is not modified. However,
the delete operation must delete the subtree. In this case, the
algorithm looking for all children to remove from the inner
set.

The update function accepts an operation which contains
type of operation (add or delete) and a path. The path
designates the new label or the label to remove; and where
to add the new node or the node to remove. The constructor
prototype of this operation is Operation(Optype optype, Path path).

2) Root policy: The root algorithm moves all orphan nodes
to the root or some special “lost-and-found” directory. The
update function of this algorithms is presented in figure 11.
When two nodes with same label are orphans, the orphans
are merged and the view presents only one node under the
root. The internal state of the connecting layer is a decorated
tree. Nodes are decorated with Paths, the set of original
paths leading to the node. The connecting layer also uses
path2node, a map to link original paths to the node objects.

When a node is added, if this path is prefix of orphans

3Due to space limitation, skip and compact policies are not presented but
are implemented in our open-source framework.

1 void Update(SetOperation change) {
2 Path path = change.content;
3 if (change.type == add) { // Adds Operation.
4 Label last = path.removeLast(); // Computes the father path
5 Node father = tree.getNode(Path); // Get father from path
6 if (father == null) { // If node is Orphan node
7 Node node = tree.root;
8 Path nPath = new Path();
9 for (Label l : path) {

10 Node c = node.getChild(l);
11 if (c == null) {
12 c = tree .add(node, l); // reappear as ghost
13 ghosts.add(c);
14 }
15 node = c;
16 }
17 tree .add(node, last);
18 } else { // Not Orphan Node
19 Node node = tree.add(father, last , path);
20 ghosts.remove(node);
21 }
22 } else { // Del Operation
23 Node node = tree.getNode(path);
24 if (node.children.isEmpty()) {
25 do { // Purge ghosts
26 Node father = node.getFather();
27 ghosts.remove(node);
28 tree .del(node);
29 node = father;
30 } while (ghosts.contains(node) && node.children.isEmpty());
31 } else { // Node has children
32 ghosts.add(node); // Become a ghost
33 }
34 }
35 }

Fig. 10. Update function for incremental reappear policy

paths, then all corresponding nodes are reattached by move
function. The move function looks for all prefixes in Paths
of all children of the root node and removes them. It adds the
node to reattach and adds this prefix. All nodes with empty
Paths are deleted.

The modify function browses the tree through a path, takes
the last node and forges the operation with the Paths. For
example, in case of add operation, the modify function adds
each element of Paths concatenated by new label and in case
of delete operation it deletes every path present is Paths.

In our example9iii), when b is deleted and c is added under
b, the c is moved under the root. However, a node c is already
under the root. Two nodes c fusion and c contains the path c
and path abc.

C. Ordered Tree Data Type
In this section, we design ordered tree. As presented in

Figure 12i), we directly use the unordered tree data structure
and we add an ordering layer. To order the children of a
node we use Position Identifier (introduced in Section III-A).
We mark all labels with a position identifier. Therefore, the
nodes become totally ordered. The set of paths, managed by
the replication layer, is represented by p = (l1, p1) · · · (ln, pn)
with li 2 ⌃ a label and pi a position identifier. However, the
modify interface of the tree ordering layer must be independent
of the chosen ordering algorithm. The ordering layer interface
receives operation based on a path defined on integer position
without label (ex : 2.4.5.1). Each integer position corresponds

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c

Tree

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c
...
............
............
.....

Rep.1

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

Rep.2

Fig. 8. Concurrent operations in replicated trees

....................................

....................................

....................................

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

a

c

i) Skip

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

ii) Reappear

....................................

..

....................................

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

a c

c

iii) Root

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

....................................

....................................

....................................

a

c

iv) Compact

Fig. 9. Different behavior for resolving conflict in trees

each time the set is modified, this tree lookup is eventually
consistent. Of course, re-computing the whole tree lookup is
not efficient, and we can define incremental version of the four
policies. We present here the reappear and root incremental
policies3.

1) Reappear Policy: The reappear algorithm presented in
Figure 10, uses a set of “ghosts”. When an orphan node
is added in the inner set, the policy recreates its ancestors
as ghosts by browsing through the path. When a node with
children is removed in the inner set, this node is not removed in
the tree. But it is just marked as a ghost. Ghosts are unmarked
when the node path is re-added in the set. All leaf nodes
marked as ”ghost” are recursively removed until there was
nothing left. In our example b is a ghost (see Fig. 9ii)).

The update function for the reappear algorithm is written
in figure 10. The modify function converts a path of lookup
to a path for inner set. By chance, in this policy the path is
not modified. Thus, add operation is not modified. However,
the delete operation must delete the subtree. In this case, the
algorithm looking for all children to remove from the inner
set.

The update function accepts an operation which contains
type of operation (add or delete) and a path. The path
designates the new label or the label to remove; and where
to add the new node or the node to remove. The constructor
prototype of this operation is Operation(Optype optype, Path path).

2) Root policy: The root algorithm moves all orphan nodes
to the root or some special “lost-and-found” directory. The
update function of this algorithms is presented in figure 11.
When two nodes with same label are orphans, the orphans
are merged and the view presents only one node under the
root. The internal state of the connecting layer is a decorated
tree. Nodes are decorated with Paths, the set of original
paths leading to the node. The connecting layer also uses
path2node, a map to link original paths to the node objects.

When a node is added, if this path is prefix of orphans

3Due to space limitation, skip and compact policies are not presented but
are implemented in our open-source framework.

1 void Update(SetOperation change) {
2 Path path = change.content;
3 if (change.type == add) { // Adds Operation.
4 Label last = path.removeLast(); // Computes the father path
5 Node father = tree.getNode(Path); // Get father from path
6 if (father == null) { // If node is Orphan node
7 Node node = tree.root;
8 Path nPath = new Path();
9 for (Label l : path) {

10 Node c = node.getChild(l);
11 if (c == null) {
12 c = tree .add(node, l); // reappear as ghost
13 ghosts.add(c);
14 }
15 node = c;
16 }
17 tree .add(node, last);
18 } else { // Not Orphan Node
19 Node node = tree.add(father, last , path);
20 ghosts.remove(node);
21 }
22 } else { // Del Operation
23 Node node = tree.getNode(path);
24 if (node.children.isEmpty()) {
25 do { // Purge ghosts
26 Node father = node.getFather();
27 ghosts.remove(node);
28 tree .del(node);
29 node = father;
30 } while (ghosts.contains(node) && node.children.isEmpty());
31 } else { // Node has children
32 ghosts.add(node); // Become a ghost
33 }
34 }
35 }

Fig. 10. Update function for incremental reappear policy

paths, then all corresponding nodes are reattached by move
function. The move function looks for all prefixes in Paths
of all children of the root node and removes them. It adds the
node to reattach and adds this prefix. All nodes with empty
Paths are deleted.

The modify function browses the tree through a path, takes
the last node and forges the operation with the Paths. For
example, in case of add operation, the modify function adds
each element of Paths concatenated by new label and in case
of delete operation it deletes every path present is Paths.

In our example9iii), when b is deleted and c is added under
b, the c is moved under the root. However, a node c is already
under the root. Two nodes c fusion and c contains the path c
and path abc.

C. Ordered Tree Data Type
In this section, we design ordered tree. As presented in

Figure 12i), we directly use the unordered tree data structure
and we add an ordering layer. To order the children of a
node we use Position Identifier (introduced in Section III-A).
We mark all labels with a position identifier. Therefore, the
nodes become totally ordered. The set of paths, managed by
the replication layer, is represented by p = (l1, p1) · · · (ln, pn)
with li 2 ⌃ a label and pi a position identifier. However, the
modify interface of the tree ordering layer must be independent
of the chosen ordering algorithm. The ordering layer interface
receives operation based on a path defined on integer position
without label (ex : 2.4.5.1). Each integer position corresponds

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c

Tree

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c
...
............
............
.....

Rep.1

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

Rep.2

Fig. 8. Concurrent operations in replicated trees

....................................

....................................

....................................

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

a

c

i) Skip

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

ii) Reappear

....................................

..

....................................

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

a c

c

iii) Root

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

....................................

....................................

....................................

a

c

iv) Compact

Fig. 9. Different behavior for resolving conflict in trees

each time the set is modified, this tree lookup is eventually
consistent. Of course, re-computing the whole tree lookup is
not efficient, and we can define incremental version of the four
policies. We present here the reappear and root incremental
policies3.

1) Reappear Policy: The reappear algorithm presented in
Figure 10, uses a set of “ghosts”. When an orphan node
is added in the inner set, the policy recreates its ancestors
as ghosts by browsing through the path. When a node with
children is removed in the inner set, this node is not removed in
the tree. But it is just marked as a ghost. Ghosts are unmarked
when the node path is re-added in the set. All leaf nodes
marked as ”ghost” are recursively removed until there was
nothing left. In our example b is a ghost (see Fig. 9ii)).

The update function for the reappear algorithm is written
in figure 10. The modify function converts a path of lookup
to a path for inner set. By chance, in this policy the path is
not modified. Thus, add operation is not modified. However,
the delete operation must delete the subtree. In this case, the
algorithm looking for all children to remove from the inner
set.

The update function accepts an operation which contains
type of operation (add or delete) and a path. The path
designates the new label or the label to remove; and where
to add the new node or the node to remove. The constructor
prototype of this operation is Operation(Optype optype, Path path).

2) Root policy: The root algorithm moves all orphan nodes
to the root or some special “lost-and-found” directory. The
update function of this algorithms is presented in figure 11.
When two nodes with same label are orphans, the orphans
are merged and the view presents only one node under the
root. The internal state of the connecting layer is a decorated
tree. Nodes are decorated with Paths, the set of original
paths leading to the node. The connecting layer also uses
path2node, a map to link original paths to the node objects.

When a node is added, if this path is prefix of orphans

3Due to space limitation, skip and compact policies are not presented but
are implemented in our open-source framework.

1 void Update(SetOperation change) {
2 Path path = change.content;
3 if (change.type == add) { // Adds Operation.
4 Label last = path.removeLast(); // Computes the father path
5 Node father = tree.getNode(Path); // Get father from path
6 if (father == null) { // If node is Orphan node
7 Node node = tree.root;
8 Path nPath = new Path();
9 for (Label l : path) {

10 Node c = node.getChild(l);
11 if (c == null) {
12 c = tree .add(node, l); // reappear as ghost
13 ghosts.add(c);
14 }
15 node = c;
16 }
17 tree .add(node, last);
18 } else { // Not Orphan Node
19 Node node = tree.add(father, last , path);
20 ghosts.remove(node);
21 }
22 } else { // Del Operation
23 Node node = tree.getNode(path);
24 if (node.children.isEmpty()) {
25 do { // Purge ghosts
26 Node father = node.getFather();
27 ghosts.remove(node);
28 tree .del(node);
29 node = father;
30 } while (ghosts.contains(node) && node.children.isEmpty());
31 } else { // Node has children
32 ghosts.add(node); // Become a ghost
33 }
34 }
35 }

Fig. 10. Update function for incremental reappear policy

paths, then all corresponding nodes are reattached by move
function. The move function looks for all prefixes in Paths
of all children of the root node and removes them. It adds the
node to reattach and adds this prefix. All nodes with empty
Paths are deleted.

The modify function browses the tree through a path, takes
the last node and forges the operation with the Paths. For
example, in case of add operation, the modify function adds
each element of Paths concatenated by new label and in case
of delete operation it deletes every path present is Paths.

In our example9iii), when b is deleted and c is added under
b, the c is moved under the root. However, a node c is already
under the root. Two nodes c fusion and c contains the path c
and path abc.

C. Ordered Tree Data Type
In this section, we design ordered tree. As presented in

Figure 12i), we directly use the unordered tree data structure
and we add an ordering layer. To order the children of a
node we use Position Identifier (introduced in Section III-A).
We mark all labels with a position identifier. Therefore, the
nodes become totally ordered. The set of paths, managed by
the replication layer, is represented by p = (l1, p1) · · · (ln, pn)
with li 2 ⌃ a label and pi a position identifier. However, the
modify interface of the tree ordering layer must be independent
of the chosen ordering algorithm. The ordering layer interface
receives operation based on a path defined on integer position
without label (ex : 2.4.5.1). Each integer position corresponds

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c

Tree

..........

.........

.........

.........

.........

.

...........
..........
..........
..........
..........
...

....................................

....................................

..

a

b c
...
............
............
.....

Rep.1

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

Rep.2

Fig. 8. Concurrent operations in replicated trees

....................................

....................................

....................................

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

a

c

i) Skip

..........

.........

.........

.........

.........

.

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

....................................

....................................

..

....................................

a

b c

c

ii) Reappear

....................................

..

....................................

...
..........
..........
..........
..........
...

..........

.........

.........

.........

.........

.

a c

c

iii) Root

..........

.........

.........

.........

.........

.

..........

.........

.........

.........

.........

.

....................................

....................................

....................................

a

c

iv) Compact

Fig. 9. Different behavior for resolving conflict in trees

each time the set is modified, this tree lookup is eventually
consistent. Of course, re-computing the whole tree lookup is
not efficient, and we can define incremental version of the four
policies. We present here the reappear and root incremental
policies3.

1) Reappear Policy: The reappear algorithm presented in
Figure 10, uses a set of “ghosts”. When an orphan node
is added in the inner set, the policy recreates its ancestors
as ghosts by browsing through the path. When a node with
children is removed in the inner set, this node is not removed in
the tree. But it is just marked as a ghost. Ghosts are unmarked
when the node path is re-added in the set. All leaf nodes
marked as ”ghost” are recursively removed until there was
nothing left. In our example b is a ghost (see Fig. 9ii)).

The update function for the reappear algorithm is written
in figure 10. The modify function converts a path of lookup
to a path for inner set. By chance, in this policy the path is
not modified. Thus, add operation is not modified. However,
the delete operation must delete the subtree. In this case, the
algorithm looking for all children to remove from the inner
set.

The update function accepts an operation which contains
type of operation (add or delete) and a path. The path
designates the new label or the label to remove; and where
to add the new node or the node to remove. The constructor
prototype of this operation is Operation(Optype optype, Path path).

2) Root policy: The root algorithm moves all orphan nodes
to the root or some special “lost-and-found” directory. The
update function of this algorithms is presented in figure 11.
When two nodes with same label are orphans, the orphans
are merged and the view presents only one node under the
root. The internal state of the connecting layer is a decorated
tree. Nodes are decorated with Paths, the set of original
paths leading to the node. The connecting layer also uses
path2node, a map to link original paths to the node objects.

When a node is added, if this path is prefix of orphans

3Due to space limitation, skip and compact policies are not presented but
are implemented in our open-source framework.

1 void Update(SetOperation change) {
2 Path path = change.content;
3 if (change.type == add) { // Adds Operation.
4 Label last = path.removeLast(); // Computes the father path
5 Node father = tree.getNode(Path); // Get father from path
6 if (father == null) { // If node is Orphan node
7 Node node = tree.root;
8 Path nPath = new Path();
9 for (Label l : path) {

10 Node c = node.getChild(l);
11 if (c == null) {
12 c = tree .add(node, l); // reappear as ghost
13 ghosts.add(c);
14 }
15 node = c;
16 }
17 tree .add(node, last);
18 } else { // Not Orphan Node
19 Node node = tree.add(father, last , path);
20 ghosts.remove(node);
21 }
22 } else { // Del Operation
23 Node node = tree.getNode(path);
24 if (node.children.isEmpty()) {
25 do { // Purge ghosts
26 Node father = node.getFather();
27 ghosts.remove(node);
28 tree .del(node);
29 node = father;
30 } while (ghosts.contains(node) && node.children.isEmpty());
31 } else { // Node has children
32 ghosts.add(node); // Become a ghost
33 }
34 }
35 }

Fig. 10. Update function for incremental reappear policy

paths, then all corresponding nodes are reattached by move
function. The move function looks for all prefixes in Paths
of all children of the root node and removes them. It adds the
node to reattach and adds this prefix. All nodes with empty
Paths are deleted.

The modify function browses the tree through a path, takes
the last node and forges the operation with the Paths. For
example, in case of add operation, the modify function adds
each element of Paths concatenated by new label and in case
of delete operation it deletes every path present is Paths.

In our example9iii), when b is deleted and c is added under
b, the c is moved under the root. However, a node c is already
under the root. Two nodes c fusion and c contains the path c
and path abc.

C. Ordered Tree Data Type
In this section, we design ordered tree. As presented in

Figure 12i), we directly use the unordered tree data structure
and we add an ordering layer. To order the children of a
node we use Position Identifier (introduced in Section III-A).
We mark all labels with a position identifier. Therefore, the
nodes become totally ordered. The set of paths, managed by
the replication layer, is represented by p = (l1, p1) · · · (ln, pn)
with li 2 ⌃ a label and pi a position identifier. However, the
modify interface of the tree ordering layer must be independent
of the chosen ordering algorithm. The ordering layer interface
receives operation based on a path defined on integer position
without label (ex : 2.4.5.1). Each integer position corresponds

Incremental reappear policy

•  Mark reappeared nodes – “ghosts”

•  Path added in the inner set
•  Creates recursively missing father(s)
•  Creates node if needed (else unmark)

•  Path removed in the inner set
•  If corresponding node got no child
•  Removes it
•  If it was the last child of a reappeared node, removes

recursively its father
•  Else marks it

Example of incremental
reappear policy

a

b

c d

e

f

Ø Del(ab)

Ø Del(abc)

Ø Del(abd)

Ø Add(abc)

Ghost without children is deleted

Ordered Trees

Ordered Tree

Connected Tree

Set of

position paths

•  Position path are list of
couple (position, label)

•  Position are unique, totally
ordered and define in a
dense space

•  Several existing possibility
•  Logoot [Weiss et al 09],

•  FCEdit [Martin, Lugiez 09],

•  Treedoc [Preguiça et al 09],

•  PPS [Wu et al 10], ...

Experiments

•  Evaluate performance of the approach
•  Overhead of layers and connection algorithms
•  4 connection policies : skip, reappear, root, compact
•  2 positions identifier : Logoot, WOOTH

•  Skip policy compared to
•  Operational Transformation (OT) [Ressel et al 96]
•  “Naïve” tree based on TTF [Oster et al 06]

•  TreeOPT [Ignat, Morrie 03]
•  Conflict-free Replicated Data Types (CRDT) [Shapiro et al 11]
•  Tree CRDT : FCEdit [Martin, Lugiez 09]

Experiments Set up

•  Open-source Benchmark (Java)

http://github.com/score- team/replication- benchmarker

•  Layered implementation
new PositionIdentifierTree(new WordTree(new ReappearPolicy(), new CounterSet()))

•  One randomly generated trace (available)
•  30,000 operations

•  Random paths

•  80% insertions

•  Intel(R) Xeon(R) 5160 dual-core
•  3 executions

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

T
im

e
 (

in
 m

ic
ro

se
co

n
d

s)

Operation (100x)

FCEdit
OTTree
Logoot

WOOTH
TreeOPT

Experiments : Local execution time
skip policy

•  All approaches are below 30 μs

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

T
im

e
 (

in
 m

ic
ro

se
co

n
d

s)

Operation (100x)

FCEdit
OTTree
Logoot

WOOTH
TreeOPT

Experiments : Remote execution time
Skip policy (log scale)

•  Layers are below 30 μs

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

 M
e
m

o
ry

 (
b
yt

e
s)

Operation(x100)

FCEdit
OTTree
Logoot

WOOTH
TreeOPT

Experiments : Memory
Skip policy (log scale)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

T
im

e
 (

in
 m

ic
ro

se
co

n
d

s)

Operation (100x)

Logoot-Reappear
Logoot-Skip
Logoot-Root

Logoot-Compact
WOOTH-Reappear

Experiments : Local execution
times policies

•  All policies (except root) are below 120 μs

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300

T
im

e
 (

in
 m

ic
ro

se
co

n
d

s)

Operation (100x)

Logoot-Reappear
Logoot-Skip
Logoot-Root

Logoot-Compact
WOOTH-Reappear

Experiments : Remote execution
times policies

•  All policies (except root) are below 20 μs

Related Work

•  Replicated data types
•  Ad-hoc, OT, CRDT, ...

•  We use them as replication layer

•  Generic replication frameworks
•  Bayou [Terry et al 95], IceCube [Kermarrec et al 01]

•  Do not scale well since centralized

•  Collaborative applications
•  DVCS (git, darcs, hg, ...), replicated file systems (Fuse,

•  Some conflicts have to be resolved by the users

Conclusion

•  Benefit of our approach
•  Behavior modularity

•  More complex data types (XML, ...)

•  “Conflict outside the data” : separate awareness from
consistency

•  Performances
•  Very stable

•  Comparable to ad-hoc approaches

Future Work

•  Experiments on large-scale real data
•  Open-sources DVCS traces

•  User file-system (FUSE)

•  Incremental DTD correction layers

•  Effective awareness support

•  Formal proof of equivalence between incremental and
stateless policies

