
CRDT transactions in a scalable way*
with SwiftCloud

Marek Zawirski UPMC-LIP6 & INRIA
Annette Bieniusa U. Kaiserslautern
Valter Balegas UNL
Nuno Preguiça UNL
Sérgio Duarte UNL
Marc Shapiro INRIA & UPMC-LIP6
Carlos Baquero U. Minho

ConcoRDanT+STREAMS M24 meeting, Nantes, November 2012

Object model and transactional guarantees

2

C1

C2
get()=0 inc() inc() inc() get()=2

Example: a replicated counter object (CRDT)

inc() inc() get()=2 get()=0 inc()

A simplified model of object replica

• Log of updates, a linear extension of ”happened-before” order
• Object version = initial state + application of a valid subsequence
• Suboptimal, later extended with pruning

inc() inc() inc()

Object model and transactional guarantees

3

C1

C2

get()=0 inc()

get()=0 inc()

get()=1

inc() inc() get()=2

Example: a database of replicated counters

inc() inc() get()=2

inc() inc()

get()=0 inc()

C3

inc() inc()

inc()

get()=2

get()=1

inc()

inc()

x

y

y

z

z

x

Transaction = a sequence of queries and updates
• Atomicity => all-or-none updates visible
• Consients snapshot for reads => consistent cut based on causality

• Causality extended across objects through each transaction
• Session guarantees => growing snapshot including prior updates
• No aborts => asynchronous implementation possible

get()=0

get()=0

Atomicity violation

Inconsistent snapshot

Session guarantees violation

get()=2

inc()

inc()

update
transaction

update
transaction

read
trans.

update
transaction

Object model and transactional guarantees

4

C1

C2

C3

x

y

y

z

z

x

Simplified update transaction record
• Read set = write set

update
transaction

Example: a database of replicated objects

What makes the problem hard? Workaround!

5

Versioning and tracking causality is difficult under our assumptions:
• Partial replication => direct dependency (causality) tracking hard
• Dynamic replica set => locating objects and updates dissemination hard
• High client churn => very big vector clocks

Workaround: use Data Centers as full reference replicas processing transactions!

C4 x
z

update
transaction

update
transaction

read
trans.

update
transaction

C1

C2

C3

x

y

y

z

z

x

update
transaction

u.t. get()=1

The 2-tier architecture with (naïve) handoff

6 6

d C1 x
(C1 , 1)

d
DC1

x

y

(C1 , 1)

d
DC2

x

y

d
C2

x

d C3 x

CBCAST

(C1 , 1)

(C2 , 1)

(C2, 1)

CBCAST

x! y!



(C3 , 1) (C1 , 1)

x!

(C3 , 1)

(C3 , 1)

CBCAST

(C1 , 1)

y

(C2 , 1)

(C1 , 2)

(C1 , 2)



(C1, 2)

Unique timestamp

Handoff protocol

Tier 1: limited set of Data Centers
• Each DC ≈ a powerful sequential process**
• Full replicas
• Exchange transaction records via causal broadcast

New transaction => define a snapshot
• Defines visible transaction records
• Efficiently encoded as a vector

Execute transaction
(generate updates)

Handoff transaction

Fetch necessary records*
Tier 2: Scouts (Clients)
• Partial replica, dynamic set of objects
• Communicate with DC only

 Dissemination and snapshot problems solved: DC-CBCAST is affordable!
(records delivery order is stronger than causality)

― Version Vectors (e.g. snapVV) unacceptably large: O(|Clients|)

Handoff with DC-assigned alias timestamp

7

d C1 x
(C1 , 1)

d
DC1

x

y

d
DC2

x

y

d
C2

x

d C3 x

CBCAST

(C2 , 1)
(DC2, 1)

(C2, 1)
(DC2, 1)

CBCAST

x! y!



(C3 , 1)

x!

(C3 , 1)
(DC2, 2)

CBCAST

y

(C2 , 1)

(C1 , 2) During handoff DC assigns another alias timestamp to
more efficiently refer to a set of transaction records



(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C3 , 1)
(DC2, 2)

 DC-assigned aliases allow us to use managable vectors: O(|DCs|)
― But… is handoff asynchronous? Is it fault-tolerant and wait-free?

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 1)

Problem 1: making handoff asynchronous

8

d C1 x
(C1 , 1)

d
DC1

x

y

d
DC2

x

y

d
C2

x

CBCAST

(C2 , 1)
(DC2, 1)

(C2, 1)
(DC2, 1)

CBCAST

x! y!



CBCAST

y

(C2 , 1)

(C1 , 2)



(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

x! y!

(C2 , 2)

C2 awaits handoff ack+alias, does it prevent executing transaction concurrently?
 No! Include previous local transactions in snapshot by referring to their client

timestamp rather than alias (session guarantees), e.g. snapVV(C2, 2) = [1 0 C2=1]

(C2 , 2)
(DC2, 2)

(C2 , 2)
(DC2, 2)

(C1 , 1)
(DC1 , 1)

Problem 2: reading partially disseminated trans.

9

d C1 x
(C1 , 1)

d
DC1

x

y

d
DC2

x

y

d
C2

x

d C3 x

CBCAST



(C3 , 1)

x!

y

(C2 , 1)

(C1 , 2)



(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)



(C2 , 1)
(DC2, 1)

(C1 , 1)
(DC1 , 1)

(C2 , 1)
(DC2, 1)

(C1 , 1)
(DC1 , 1)

DC2 crashes!
After sending transaction (DC2, 1) to C3,
but before propagating it to DC1

DC1 cannot accept handoff, it misses
causally dependent transaction (DC2, 1)

Liveness issue: updates of client C3 are invisible to other clients until DC2 recovers
• Side-effect of depending on partially disseminated transaction
• Client C3 cannot recover missing transaction, it does not replicate y!

(C1 , 2)
(DC1 , 2)

Solution: DC offers only stable transactions

10

d C1 x
(C1 , 1)

d
DC1

x

y

d
DC2

x

y

d
C2

x

d C3 x

CBCAST



x!

y

(C2 , 1)

(C1 , 2)





Do not expose partially disseminated transaction

 Keep track of stable transactions, e.g. disseminated to majority of DCs
 Offer only stable transactions to the client (modulo his own transactions)
― Delays visibility of recent transactions

(C3 , 1)
(DC1, 3)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C2 , 1)
(DC2, 1)

(C1 , 1)
(DC1 , 1)

(C3 , 1)
(C1 , 1)

(DC1 , 1)

(C1 , 2)
(DC1 , 2)

Problem 3: retrying handoff request

11

d C1 x
(C1 , 1)

d
DC1

x

y

d
DC2

x

y

d
C2

x

CBCAST

(C2, 1)
(DC1, 3)

CBCAST

x! y!



CBCAST

y

(C2 , 1)

(C1 , 2)



(C2, 1)
(DC1, 3)

(C2, 1)
(DC2, 1)

No reply for C2 handoff request, status and alias unknown! DC2 crash?
Can C2 retry handoff with DC1 or DC2 or should it block?

DC2 recovers after client failover
=> duplicated transaction records?

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C2 , 1)
(DC2, 1)

Solution: make handoff idempotent

12

d C1 x
(C1 , 1)

d
DC1

x

y

d
DC2

x

y

d
C2

x

CBCAST CBCAST

x! y!



CBCAST

y

(C2 , 1)

(C1 , 2)



(C2, 1)
(DC1, 3)
(DC2, 1)

(C2, 1)
(DC1, 3)
(DC2, 1)

 Merge transaction records with identical client timestamp
(allow multiple aliases)

 This makes handoff idempotent, allows retries or failover
― Handoff idempotence more difficult with object pruning

(C2, 1)
(DC1, 3)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C1 , 1)
(DC1 , 2)

(C1 , 1)
(DC1 , 1)

(C2 , 1)
(DC2, 1)

(C2 , 1)
(DC2, 1)

(C2 , 1)
(DC1, 3)

Problem 4: pruning object updates log safely

13

d C1 x
 (C1 , 1)

d DC1
x

d DC2
x

d C2 x

CBCAST CBCAST

 (C2 , 1)
 (DC2 , 1)

 (C1 , 1)
 (DC1 , 1)

 (C1 , 1)

 (C2 , 1)
 (DC2 , 1)

 (C1 , 1)
 (DC1 , 1)

 (C1 , 2)

 (C1 , 2)

CBCAST

 (C1 , 2)
 (DC1 , 2)

 (C2 , 2)
 (DC2 , 2)
 (DC1 , 3)

 (C1 , 1)
 (DC1 , 1)

 (C2 , 1)
 (DC2 , 1)

inc()

inc()

inc()

inc() inc()

inc()

inc()

inc() inc()

inc() inc()

 (C1 , 2)
 (DC1 , 2)

inc()

Replace old log of operation with state-based CRDT and pruneVV
• For more efficient representation utilize timestamp aliases*
• Update representation must be uniform across DCs

=> pruning when set of aliases is stable (if many, select one)
• Current implementation: every DC prunes independently

=> client may need to merge states from different DCs

― Log-based object representation very costly: O(|updates|)

inc()

 (C2 , 2)
 (DC2 , 2)
 (DC1 , 3)

inc() pruneVV= [DC1=3 DC2=2], counter state=[2 2]

Pruning and handoff idempotence

14

d C1 x
 (C1 , 1)

d DC1
x

d DC2
x

d C2 x

CBCAST CBCAST

 (C1 , 1)
 (DC1 , 1)

 (C1 , 1)

 (C2 , 1)
 (DC2 , 1)

 (C1 , 2)

 (C1 , 2)

CBCAST

 (C1 , 2)
 (DC1 , 2)

 (C2 , 2)
 (DC2 , 2)
 (DC1 , 3)

 (C1 , 1)
 (DC1 , 1)

 (C2 , 1)
 (DC2 , 1)

inc()

inc() inc() inc() inc()

inc() inc()

inc() inc()

inc()

pruneVV= [DC1=3 DC2=2], counter state=[2 2] (C1 , 2)
(DC2, 3)

inc()

― Retrying handoff of pruned transaction => violated idempotence!
 Maintain single clientVV per DC – “idempotence guard”
 Never transmitted, only single entry

Lessons learnt

15

• Implementing CRDT transactions ≈ implementing a huge
“database“ semi-lattice
• Difference w.r.t. ordinary object: (dynamic) fragmentation*
• Use different techniques inside and across objects

• Causality tracking is difficult at scale, both inside/across CRDTs

• Limit communication topology, here: 2-tier architecture
• Use handoff protocol with timestamp aliasing and

• Making handoff live and correct despite Tier 1 failures
• Reading stable versions helps failover
• Timestamp aliasing helps too
• When forced to store a big VV, share it across DB

