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Object model and transactional guarantees 
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Example: a replicated counter object (CRDT) 

inc() inc() get()=2 get()=0 inc() 

A simplified model of object replica 
 
 
• Log of updates, a linear extension of  ”happened-before” order 
• Object version = initial state + application of a valid subsequence 
• Suboptimal, later extended with pruning 

inc() inc() inc() 



Object model and transactional guarantees 
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Example:  a database of replicated counters 
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Transaction = a sequence of queries and updates 
• Atomicity => all-or-none updates visible 
• Consients snapshot for reads => consistent cut based on causality 

• Causality extended across objects through each transaction 
• Session guarantees => growing snapshot including prior updates 
• No aborts => asynchronous  implementation possible 
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Atomicity violation 

Inconsistent snapshot 

Session guarantees violation 
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Simplified update transaction record 
• Read set = write set 

update 
transaction 

Example:  a database of replicated objects 



What makes the problem hard? Workaround! 
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Versioning and tracking causality is difficult under our assumptions: 
• Partial replication => direct dependency (causality) tracking hard 
• Dynamic replica set => locating objects and updates dissemination hard 
• High client churn => very big vector clocks 

 
Workaround: use Data Centers as full reference replicas processing transactions! 
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The 2-tier architecture with (naïve) handoff 
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Unique timestamp 

Handoff protocol 

Tier 1: limited set of Data Centers 
• Each DC  ≈ a powerful sequential process** 
• Full replicas 
• Exchange transaction records via causal broadcast 

New transaction => define a snapshot 
• Defines visible transaction records 
• Efficiently encoded as a vector 

Execute transaction 
(generate updates) 

Handoff transaction 

Fetch necessary records* 
Tier 2: Scouts (Clients) 
• Partial replica, dynamic set of objects 
• Communicate with DC only 

 Dissemination and snapshot problems solved: DC-CBCAST is affordable! 
(records delivery order is stronger than causality) 

― Version Vectors (e.g. snapVV) unacceptably large: O(|Clients|) 



Handoff with DC-assigned alias timestamp 
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(C1 , 2) During handoff DC assigns another alias timestamp to 
more efficiently refer to a set of transaction records 
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 DC-assigned aliases allow us to use managable vectors: O(|DCs|) 
― But… is handoff asynchronous? Is it fault-tolerant and wait-free? 
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Problem 1: making handoff asynchronous 
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C2 awaits handoff ack+alias, does it prevent executing transaction concurrently? 
 No! Include previous local transactions in snapshot by referring to their client 

timestamp rather than alias (session guarantees), e.g. snapVV(C2, 2) = [1 0 C2=1] 
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Problem 2: reading partially disseminated trans. 
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DC2 crashes! 
After sending transaction (DC2, 1) to C3, 
but before propagating it to DC1 

DC1 cannot accept handoff, it misses 
causally dependent transaction (DC2, 1) 

Liveness issue: updates of client C3 are invisible to other clients until DC2 recovers 
• Side-effect of depending on partially disseminated transaction 
• Client C3 cannot recover missing transaction, it does not replicate y! 
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Solution: DC offers only stable transactions 
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Do not expose partially disseminated transaction  

 Keep track of stable transactions, e.g. disseminated to majority of DCs 
 Offer only stable transactions to the client (modulo his own transactions) 
― Delays visibility of recent transactions 
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Problem 3: retrying handoff request 
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No reply for C2 handoff request, status and alias unknown! DC2 crash? 
Can C2 retry handoff with DC1 or DC2 or should it block? 

DC2 recovers  after client failover  
=> duplicated transaction records? 
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Solution: make handoff idempotent 
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 Merge transaction records with identical client timestamp 
(allow multiple aliases) 

 This makes handoff idempotent, allows retries or failover 
― Handoff idempotence more difficult with object pruning  
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Problem 4: pruning object updates log safely 
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Replace old log of operation with state-based CRDT and pruneVV 
• For more efficient representation utilize timestamp aliases* 
• Update representation must be uniform across DCs 

=> pruning when set of aliases is stable (if many, select one) 
• Current implementation: every DC prunes independently 

=> client may need to merge states from different DCs 

― Log-based object representation very costly:  O(|updates|) 
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inc() pruneVV= [DC1=3 DC2=2], counter state=[2 2] 



Pruning and handoff idempotence 
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― Retrying handoff of pruned transaction => violated idempotence! 
 Maintain single clientVV per DC – “idempotence guard” 
 Never transmitted, only single entry 



Lessons learnt 
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• Implementing CRDT transactions ≈ implementing a huge 
“database“ semi-lattice 
• Difference w.r.t. ordinary object: (dynamic) fragmentation* 
• Use different techniques inside and across objects 

 
• Causality tracking is difficult at scale, both inside/across CRDTs 

• Limit communication topology, here: 2-tier architecture 
• Use handoff protocol  with timestamp aliasing and 
 

• Making handoff live and correct despite Tier 1 failures 
• Reading stable versions helps failover 
• Timestamp aliasing helps too 
• When forced to store a big VV, share it across DB 


