SwiftCloud
It's Time to Move the Data to the Edge

Annette Bieniusa Nuno Preguica Carlos Baquero
Marc Shapiro Sérgio Duarte

Marek Zawirski Valter Balegas

INRIA / LIP6 CITI, UNL HASLab,

UM Paris Lisbon Minho

Can we extend geo-replicated DBs to the edge?

DBs today: within DC boundaries
Commonly 10~100ms from the client + potential DC-DC cost

S

@,
L B
o Tomorrow: updatable cache and logic at the edge?
%\(7\ * Ajax and HTMLS5 call for it!
\f:f " | + High responsiveness, latency potentially at ~Oms
* Fault tolerance, session guarantees almost for free)
N

How to maintain replicas at the edge and program the system?
Eventually Consistency => right track, but programming is a nightmare.

Our answer: SwiftCloud = a prototype DB system for the edge
_ Y,

Outline

Programming model
Architecture

Evaluation

Challenges of programming EC system at the edge

Problem: programming a key-value store is notoriously hard
With updates at the edge it can only get worse (high concurrency, stale data)
‘ \ % | | \
Bob Jo‘y
Get (“bob posts”) => [“X"] Get (“bob posts”, [“X"])
Put (“bob posts”, []) Put (“bob posts”, [“X", “Y"])
Get (Ybob posts”) => ?2?7? Get (“bob posts”) => ??7?
Gzep 1: use high-level conflict-free replicated objects (CRDTs) \
* CRDT offers a predefined deterministic outcome on concurrent updates
* Pick a data type from catalogue (sets, counters, lists...) or define one!
bob posts.get () => ["X"] bob posts.get () =>["X"]
bob posts.remove (“X") bob posts.append (“Y”)
bob posts.get () => [“Y"] bob posts.get () => [“Y"]

K Bonus: switch between operation- or state-propagation for performance /

Programming EC system at the edge

Gep 2: asynchronous transactions for multi-object access \
* A useful abstraction that hides DC<->edge replication
Begin ()
bob notifications counter.get () => 4 Queries operate on a
bob friend requests.get () => {“anna”} consistent snapshot
bob friends.add(“anna”) Updates on different objects visible
ana friends.add (“bob”) atomically
bob_notifications_counter .1lnc (-1) Asynchronous commit by default
wmmit () + session guarantees

Atomicity: updates visible atomically

Queries execute in a consistent snapshot

Programming EC system at the edge

/Step 3: give control over data freshness and other guarantees)
* Unit of control: session / transaction / object access
Begin (SNAPSHOT ISOLATION, CACHED)
bob friends.get (SUBSCRIBE UPDATES)
Commit ()
\ %
Isolation levels Fault-tolerant
Snapshot isolation DC failure tolerant

Repeatable reads

Freshness levels Efficiency of commit

Cached Sync/async commit
Most recent

Programming EC system at the edge

/Step 4: being notified of other users’ updates

Begin (SNAPSHOT ISOLATION, CACHED)
Subscribe(bob wall, Listener(Update u) {
//bob wall modified

}) s

Commit ()

=

Best-effort
Information for establishing FIFO

Quick for supporting realtime applications

Outline

Architecture

Evaluation

SwiftCloud: architecture

Clients

Run applications Scouts &

clients

Scouts

Cache mutable data

/ mSequencers
@clients or @CDN @
Data center x

Surrogate :
5 | S—
Client proxy in DC
Sequencer Data nodes &
Orders transactions @ Q
Keep info on DC state AN
Surrogate
Data nodes nodes
Maintains data copies: kind é}
Storage
of memcached \\ g) nodes /

Transaction execution

For each CRDT, the system maintains a list of
versions

To be more precise: keep a versioned CRDT
Transactions access a given CRDT version
depending on the isolation level

More on that on Marek’s talk

Transaction Commit

Surrogate receives a transaction and replies it in the
DC, as follows:
1. get tx identifier from sequencer

sequencer can start replicating transaction

2. execute updates on CRDTs, by contacting data
servers — new version is generated

3. makes the transaction visible, by updating the
vector that summarizes DC state in sequencer

this makes sure that a new transactions only sees a complete
transaction

Outline

Evaluation

Evaluation environments

DC with single node running all components

DC @ Amazon EC2 (Europe and US West)
CDN + clients @ planetlab

Configuration:
latency(client-CDN) + latency(CDN-DC) <= latency(client-DC)

Rationale: CDNs are at client ISP and may have privileged
connectivity to the DCs

Evaluation environment

Scenarios
scout@client (no CDN nodes in this case)
scout@CDN
scout@DC (current web systems configuration)

Applications

Swiftdoc — two clients replay wikipedia traces; ping-
pong for measuring latency

SwiftSocial — social networking application
(Facebook-like)

SwiftDoc: propagation latency
b R Y —.cru e

e

801f SRR
70t eeonooe
Different scout soll b
o
sof]
O |
o 1/ S

e 1 S R

0-,

Cumulative Ocurrences (%)

100 ~ ‘ : : :
ofl 1L
ol (1
o
|

e

so | |t

so [{
Shared scout 10_,.} ,,,,,,, . |
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Latency (ms)

Cumulative Ocurrences (%)

|
sl f b

|-

I

- scouts@cdn =@ scouts@clt = Clt/Dc RTT = CIt/Cdn/Dc RTT == scouts@dc
— Clt/Cdn RTT

Swn‘tSouaI sync Vs. async commlt

100 1

90 1

N 0
o O

Sync
RR cached

Cumulative Ocurrences (%)
N w E N (6] »
o o o o o

—_
o

o

6 1 2 3 4 5 o '1'0 2'0 3'0 S 1(')0 260 ' ' 560
1007 : A A | ! ‘ : . =
el e
S R e 1]
< 804f Pe-ee- 0 R R e B o " e L e . f S R e AR B
3 "n LS T I 777777777 dd S l[B
e 701y) f o A ; ! A 13 o : : !
N T T HE———
S sofl /. SN V<SR R R R W I
Sl S
Sl/
E o0 /5 S R T Y - S AN O U 51 O EOS (R
Async 3 AR IR o
1047 Pt T AR R A | A T A A Y 0 e R R R
RR Cached 0l : A : : oo

o] 1 2 345 10 20 30 100 200 ' 500
Transaction Execution Time (ms)
=— Clt/Dc RTT = ClIt/Cdn/Dc RTT —& writes@client == reads@dc -=— reads@client
— CIt/Cdn RTT === writes@cdn »— reads@cdn —# writes@dc

Swn‘tSouaI sync Vs. async commlt

100 1

90 1

N 0
o O

Sync
RR cached

Cumulative Ocurrences (%)
N w E N (6] »
o o o o o

—_
o

o

6 1 2 3 4 5 o '1'0 2'0 3'0 S 1(')0 260 ' ' 560
1007 : A A | ! ‘ : . =
el e
S R e 1]
< 804f Pe-ee- 0 R R e B o " e L e . f S R e AR B
3 "n LS T I 777777777 dd S l[B
e 701y) f o A ; ! A 13 o : : !
N T T HE———
S sofl /. SN V<SR R R R W I
Sl S
Sl/
E o0 /5 S R T Y - S AN O U 51 O EOS (R
Async 3 AR IR o
1047 Pt T AR R A | A T A A Y 0 e R R R
RR Cached 0l : A : : oo

o] 1 2 345 10 20 30 100 200 ' 500
Transaction Execution Time (ms)
=— Clt/Dc RTT = ClIt/Cdn/Dc RTT —& writes@client == reads@dc -=— reads@client
— CIt/Cdn RTT === writes@cdn »— reads@cdn —# writes@dc

SwiftSociaﬁI;jSTlﬁ& most

100 1 ™
Sl o4y
[%2] ' ' ' AR R R i i i N T I
g 7oif AR R R o e
Async £ 60y A N 1 [In
3 sodl SO ST 1 IO SRR T [ER
Sl cached O T Corrhre
gaof
5 aofl b
S0 EENERIRE F
L | e e o AL S S o e & 23
0 — A : —
0 1 2 3 45 10 20 30 100 200 500

Cumulative Ocurrences (%)

Async

6 1 2'3'4'15'"”1'0 2'0 3'0""'5(')0 260 ' '5(')0
mOSt I’ecent Transaction Execution Time (ms)
— Clt/Dc RTT =— CIt/Cdn/Dc RTT =% writes@client == reads@dc == reads@client
= ClIt/Cdn RTT == writes@cdn » reads@cdn —# writes@dc

Performance [tps]

Swift social: scalability

50 100 150 200 250 300 350 400 450 500 550 600
Latency [ms]

= 2DC (US+EU) -~ 1DC (US)

Final remarks

Key-CRDT store supporting
Geo-replication among data centers
Geo-replication to the client nodes

Key features

Efficient causality tracking

Asynchronous transactions with multiple semantics,
session guarantees

Future work

Interface for notifications

Cache coherence/invalidation mechanism

