
SwiftCloud
It's Time to Move the Data to the Edge

Annette Bieniusa Nuno Preguiça Carlos Baquero
Marc Shapiro Sérgio Duarte
Marek Zawirski Valter Balegas

INRIA / LIP6 CITI, UNL HASLab,

UM Paris Lisbon Minho

How to maintain replicas at the edge and program the system?
Eventually Consistency => right track, but programming is a nightmare.
Our answer: SwiftCloud = a prototype DB system for the edge

Tomorrow: updatable cache and logic at the edge?
• Ajax and HTML5 call for it!
• High responsiveness, latency potentially at ~0ms
• Fault tolerance, session guarantees almost for free

DBs today: within DC boundaries
Commonly 10~100ms from the client + potential DC-DC cost

Can we extend geo-replicated DBs to the edge?

Outline

Motivation

Programming model

Architecture

Evaluation

Step 1: use high-level conflict-free replicated objects (CRDTs)
• CRDT offers a predefined deterministic outcome on concurrent updates
• Pick a data type from catalogue (sets, counters, lists…) or define one!

bob_posts.get() => [“X”] bob_posts.get() =>[“X”]

bob_posts.remove(“X”) bob_posts.append(“Y”)

bob_posts.get() => [“Y”] bob_posts.get() => [“Y”]

• Bonus: switch between operation- or state-propagation for performance

Challenges of programming EC system at the edge

Problem: programming a key-value store is notoriously hard
With updates at the edge it can only get worse (high concurrency, stale data)

Get(“bob_posts”) => [“X”] Get(“bob_posts”, [“X”])

Put(“bob_posts”, []) Put(“bob_posts”, [“X”, “Y”])

Get(“bob_posts”) => ??? Get(“bob_posts”) => ???

Bob John

Step 2: asynchronous transactions for multi-object access
• A useful abstraction that hides DC<->edge replication

Begin()

bob_notifications_counter.get() => 4

bob_friend_requests.get() => {“anna”}

bob_friends.add(“anna”)

ana_friends.add(“bob”)

bob_notifications_counter.inc(-1)

Commit()

Programming EC system at the edge

Queries operate on a
consistent snapshot

Updates on different objects visible
atomically

Asynchronous commit by default
+ session guarantees

Atomicity: updates visible atomically

Queries execute in a consistent snapshot

Step 3: give control over data freshness and other guarantees
• Unit of control: session / transaction / object access

Begin(SNAPSHOT_ISOLATION, CACHED)

bob_friends.get(SUBSCRIBE_UPDATES)

Commit()

Programming EC system at the edge

Isolation levels

Snapshot isolation

Repeatable reads

Freshness levels

Cached

Most recent

Fault-tolerant

DC failure tolerant

Efficiency of commit

Sync/async commit

Step 4: being notified of other users’ updates

Begin(SNAPSHOT_ISOLATION, CACHED)

Subscribe(bob_wall, Listener(Update u) {

 //bob wall modified

 });

Commit()

Programming EC system at the edge

Best-effort

Information for establishing FIFO

Quick for supporting realtime applications

Outline

Motivation

Programming model

Architecture

Evaluation

Data nodes

Surrogate
nodes

Storage
nodes

Sequencers

Scouts &
clients

RDC

RDC

RDC

SwiftCloud: architecture

Clients
Run applications

Scouts
Cache mutable data

@clients or @CDN

Data center
Surrogate

Client proxy in DC

Sequencer

Orders transactions

Keep info on DC state

Data nodes

Maintains data copies: kind
of memcached

Transaction execution

For each CRDT, the system maintains a list of
versions

To be more precise: keep a versioned CRDT

Transactions access a given CRDT version
depending on the isolation level

More on that on Marek’s talk

Transaction Commit

Surrogate receives a transaction and replies it in the
DC, as follows:

1. get tx identifier from sequencer

sequencer can start replicating transaction

2. execute updates on CRDTs, by contacting data
servers – new version is generated

3. makes the transaction visible, by updating the
vector that summarizes DC state in sequencer

this makes sure that a new transactions only sees a complete
transaction

Outline

Motivation

Programming model

Architecture

Evaluation

Evaluation environments

DC with single node running all components

DC @ Amazon EC2 (Europe and US West)

CDN + clients @ planetlab

Configuration:

latency(client-CDN) + latency(CDN-DC) <= latency(client-DC)

Rationale: CDNs are at client ISP and may have privileged
connectivity to the DCs

Evaluation environment

Scenarios

scout@client (no CDN nodes in this case)

scout@CDN

scout@DC (current web systems configuration)

Applications

Swiftdoc – two clients replay wikipedia traces; ping-
pong for measuring latency

SwiftSocial – social networking application
(Facebook-like)

SwiftDoc: propagation latency

Different scout

Shared scout

SwiftSocial: sync vs. async commit

Sync

RR cached

Async

RR cached

SwiftSocial: sync vs. async commit

Sync

RR cached

Async

RR cached

SwiftSocial: SI & most recent

Async

SI cached

Async

RR

most recent

Swift social: scalability

Final remarks

Key-CRDT store supporting

Geo-replication among data centers

Geo-replication to the client nodes

Key features

Efficient causality tracking

Asynchronous transactions with multiple semantics,
session guarantees

Future work

Interface for notifications

Cache coherence/invalidation mechanism

