
SWIFTCLOUD LIMITATIONS

Valter Balegas (FCT/UNL) intern @ LIP6/INRIA

Objective

 Identify limitations in SwiftCloud

 API support

 System Design

 Case Study: TPC-W benchmark

 Simulates an online book store

 Transactional Operations

 Traditionally implemented using relational databases

Database querying limitations (1)

 Design:

 Simple database access with put/get identifier

 Problems:

 How to apply query filters?

 E.g. Retrieve all users called “John”

 Fetch range of values

 E.g. Retrieve 1000 orders

 E.g. Retrieve the Most-Sold items

These queries require fetching all values and process them
locally

Database querying limitations (2)

 Workarounds:

 Maintain indexes

 Programmer must be careful to update them

 TOP-N CRDT

 Abstracts the index but has to maintain all data

 Solutions:

 Support server-side operations

 Compute query results remotely

Cache control limitations (1)

 Design:

 Scouts store a small portion of the database

 Automatic caching on read operations

 Programmer subscribe updates to maintain cache fresh

DC

Scout

a b c d e 1 2 3 4 5

a c 1 5

Cache control limitations (2)

 Accessing the cache

 Problems:

 No locality awareness

 Range queries overflow the cache

 Solutions:

 Allow the programmer to decide what values are cached

 Blind updates – execute update over objects without

fetching them

Cache control limitations (3)

 Maintaining the cache

 Problems:

 Values frequently updated generate too many updates

 High amount of update subscriptions impose great overhead

 Solutions:

 Compress updates on server side

 more work on the data-center

Data consistency limitations (1)

 Going beyond state convergence

 Design:

 Asynchronous system

 Problems:

 Maintaining data invariants

 Referential integrity

Data consistency limitations (2)

Account A
Balance: 20

Balance >= 0

begin()

Whitdraw: 15

commit()

Account A
Balance: 20

Balance >= 0

begin()

Whitdraw: 15

commit()

Replica 1 Replica 2

Balance: -10

Balance >= 0

Balance: -10

Balance >= 0

synch

• Maintaining data invariants

Data consistency limitations (3)

Students Courses

Alice Math

Biology

Computer Sc.

Physics

Bob

John

Replica A Replica B

begin()

add(John)

enrol(John, Physics)

begin()

rem(Physics)

commit() commit()

• Referential Integrity

Data consistency limitations (4)

 Problems:

 Maintaining data invariants

 Referential integrity

 Solutions:

 Reservation techniques

Conclusions

 Current design promotes simplicity

 System allows to implement TPC-W

 Some operations are processed very inefficiently

 Key-Value data-model not very suitable to this

application

 We can always add more features to the data-

model

 More complexity at the data-centre

 Key-Value store loses simplicity

Questions?

Other limitations

 Data-model cut across layers

 Cripples modularity and encapsulation

 increase the points of vulnerability

Data-model adaptation

 Simple data structures easily implemented with current CRDT Library

 Registers to store entities (authors, addresses,...)

 OR-Sets to avoid loosing updates on the shopping cart

 Counters to store items stock and amount sold

 However... Complex CRDTs not implemented efficiently without CRDT
composition

Shopping Cart (OR-Set)

Item_id

Qty (Integer)

Cart Entry

(Register)

Item_id

Qty (Integer)

Cart Entry

(Register)
...

