
On the Undoability Problem For CAs

On the Undoability Problem for Collaborative
Applications

Presented by Asma Cherif

Cassis Team, Loria

March 22, 2012



On the Undoability Problem For CAs

Introduction

Introduction

Undoing operations is an indispensable feature for many
collaborative applications

It provides the ability to restore a correct state of the shared
data after erroneous operations

Selective undo allows:

users to undo any operation and is based on rearranging
operations in the history



On the Undoability Problem For CAs

Introduction

Challenge

Combining OT and undo approaches is a challenging task

Undo introduces new kind of operations (inverse)

Presence of undo puzzles leading to divergence

Absence of formal guidelines for undo: the correctness of an
undo solution is still a challenging problem



On the Undoability Problem For CAs

Related Work

Swap then undo [Prakash]: First selective undo

Put the operation in the end then undo it
(-) swap is not always possible ? conflict() notion that aborts
undo

Undo/Redo [Ressel]

Overcome the conflict by undoing all operations after the one
to undo then undo it and redo these operations
(-) expensive and does not allow to undo il all cases

Ferrié Based on SOCT2 (diverge)

Uno [Weis]

Based on TTF
Generate an operation having an effect undoing the selected
operation

AnyUndo-X & COT [Sun]

Avoid undo properties instead of fulfilling them

ABTU [Shao]: based on ABT (diverge)



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;

2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;

3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;

4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that
integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.



On the Undoability Problem For CAs

Undo principle

OT Properties

For all op1, op2 and op3 pairwise concurrent operation, IT is
correct iff the following properties are satisfied:

Property TP1:
st · op1 · IT (op2, op1) = st · op2 · IT (op1, op2), for every state
st.

Property TP2: IT (IT (op3, op1), IT (op2, op1)) =
IT (IT (op3, op2), IT (op1, op2)).



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;

Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)

op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)

op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Example

a shared integer register The state of the shared integer register is
altered by two operations:

Inc()

Dec()

IT : IT (opi , opj) = opi

Verifies IP1, IP2 and IP3



On the Undoability Problem For CAs

Undo Properties

Example

Consider a shared binary register where two primitive operations
modify the state of a bite from 0 to 1 and vice versa:

Up to turn on the register;

Down to turn off the register;

IT :

IT (Up,Up) = IT (Up,Down) = IT (Down,Up) = Up
IT (Down,Down) = Down

Violates IP1, IP2 and IP3



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Undo Properties

IP3 violation



On the Undoability Problem For CAs

Problem Statement

Definition of undoability

Undoability

A set is undoable iff IP1/2/3 are preserved



On the Undoability Problem For CAs

Problem Statement

Consistent Collaborative Object (CCO)

Definition of CCO

Consistent Collaborative Object (CCO)

A Consistent Collaborative object is a triplet C = 〈St,Op, IT 〉
such that:

St is the set of object states

Op is the set of primitive operations executed by the user to
modify the object state. This set is characterized by the
following properties:

for every operation op ∈ Op there is unique inverse op ∈ Op
such that op 6= op and st · op · op = st for all states st ∈ St;
for every operation op ∈ Op there exists a state st ∈ St such
that st · op = st ′ where st ′ 6= st.

IT : Op ×Op → Op is a correct transformation function



On the Undoability Problem For CAs

Problem Statement

Formal Problem Statement

Formal Problem Statement

Problem: Given a consistent collaborative object C =
〈St,Op, IT 〉, what are the necessary and the sufficient
conditions that C is undoable?



On the Undoability Problem For CAs

Problem Statement

Formal Problem Statement

Steps of the proof

Main Theorem

A CCO is undoable iff Op is commutative

To prove the the main theorem, we follow these steps:

1 define commutativity for concurrent operations (using IT )

2 prove that commutativity is necessary for undoability

3 prove tha commutativity is sufficient to reach undoability



On the Undoability Problem For CAs

Problem Statement

Formal Problem Statement

Steps of the proof

Main Theorem

A CCO is undoable iff Op is commutative

To prove the the main theorem, we follow these steps:

1 define commutativity for concurrent operations (using IT )

2 prove that commutativity is necessary for undoability

3 prove tha commutativity is sufficient to reach undoability



On the Undoability Problem For CAs

Problem Statement

Formal Problem Statement

Steps of the proof

Main Theorem

A CCO is undoable iff Op is commutative

To prove the the main theorem, we follow these steps:

1 define commutativity for concurrent operations (using IT )

2 prove that commutativity is necessary for undoability

3 prove tha commutativity is sufficient to reach undoability



On the Undoability Problem For CAs

Problem Statement

Formal Problem Statement

Steps of the proof

Main Theorem

A CCO is undoable iff Op is commutative

To prove the the main theorem, we follow these steps:

1 define commutativity for concurrent operations (using IT )

2 prove that commutativity is necessary for undoability

3 prove tha commutativity is sufficient to reach undoability



On the Undoability Problem For CAs

Problem Statement

Commutativity

Definition of commutativity in terms of IT

Given two concurrent operations op1 and op2

Correct IT (TP1 & TP2)

op1 commutes with op2 iff

IT (op1, op2) = op1

IT (op2, op1) = op2



On the Undoability Problem For CAs

Problem Statement

Commutativity

Commutativity implies undoability

If Op is commutative then IP2 and IP3 are preserved:

IP2:
IT (IT (op1, op2), op2) = IT (op1, op2) = op1

IP3:
IT (op1, IT (op2, op1)) = IT (op1, op2) = op1



On the Undoability Problem For CAs

Problem Statement

Commutativity

Commutativity implies undoability

If Op is commutative then IP2 and IP3 are preserved:

IP2:
IT (IT (op1, op2), op2) = IT (op1, op2) = op1

IP3:
IT (op1, IT (op2, op1)) = IT (op1, op2) = op1



On the Undoability Problem For CAs

Problem Statement

Commutativity

Commutativity implies undoability

If Op is commutative then IP2 and IP3 are preserved:

IP2:
IT (IT (op1, op2), op2) = IT (op1, op2) = op1

IP3:
IT (op1, IT (op2, op1)) = IT (op1, op2) = op1



On the Undoability Problem For CAs

Problem Statement

Commutativity

Undoability implies Commutativity

Given a CCO C = 〈St,Op, IT 〉, proving that undoability implies
commutativity requires

to find all evaluations of IT that respect TP1/2 and IP1/2/3

Combinatorial problem

We have no information about the result of IT function for a
couple (op1, op2)

We resort to CSP theory to overcome the proof’s difficulty



On the Undoability Problem For CAs

Problem Statement

Commutativity

Undoability implies Commutativity

Given a CCO C = 〈St,Op, IT 〉, proving that undoability implies
commutativity requires

to find all evaluations of IT that respect TP1/2 and IP1/2/3

Combinatorial problem

We have no information about the result of IT function for a
couple (op1, op2)

We resort to CSP theory to overcome the proof’s difficulty



On the Undoability Problem For CAs

Problem Statement

Commutativity

Undoability implies Commutativity

Given a CCO C = 〈St,Op, IT 〉, proving that undoability implies
commutativity requires

to find all evaluations of IT that respect TP1/2 and IP1/2/3

Combinatorial problem

We have no information about the result of IT function for a
couple (op1, op2)

We resort to CSP theory to overcome the proof’s difficulty



On the Undoability Problem For CAs

Problem Statement

Commutativity

Undoability implies Commutativity

Given a CCO C = 〈St,Op, IT 〉, proving that undoability implies
commutativity requires

to find all evaluations of IT that respect TP1/2 and IP1/2/3

Combinatorial problem

We have no information about the result of IT function for a
couple (op1, op2)

We resort to CSP theory to overcome the proof’s difficulty



On the Undoability Problem For CAs

Problem Statement

Commutativity

CSP Theory



On the Undoability Problem For CAs

Problem Statement

Commutativity

Necessity proof by induction on the size of Op

use induction on the size of Op
basic cases of induction proved with a CSP solver

CCO of two operations
CCO of four operations



On the Undoability Problem For CAs

Problem Statement

Commutativity

Necessity Proof

basic cases of induction proved with a CSP solver

CCO of two operations: two possible cases produced by our
CSP solver:

∀op1, op2 ∈ Op IT (op1, op2) = op1
Op is 4-periodic and is commutative

CCO of four operations:

∀op1, op2 ∈ Op IT (op1, op2) = op1
Op is 4-periodic and is commutative
Op is 6-periodic and is commutative



On the Undoability Problem For CAs

Problem Statement

Commutativity

Conclusion

Contributions:

we address the undo problem from a theoretical point of view
we propose a necessary and sufficient condition for undoing
replicated objects based on OT with respect to inverse
properties IP1/2/3
Use of CSP theory to overcome the difficulty of necessity proof
in order to cover all possible transformation cases
main result: it is impossible to achieve a correct undo for
applications based on non commutative operations

Future work:

generalize the result to cover the special case where an
operation is equal to its inverse
relax our condition and see if the use of idle operations may
ensure undoability


	Introduction
	Related Work
	Undo principle
	Undo Properties
	Problem Statement
	Consistent Collaborative Object (CCO)
	Formal Problem Statement
	Commutativity


