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Introduction

Undoing operations is an indispensable feature for many
collaborative applications

It provides the ability to restore a correct state of the shared
data after erroneous operations

Selective undo allows:

users to undo any operation and is based on rearranging
operations in the history
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Challenge

Combining OT and undo approaches is a challenging task

Undo introduces new kind of operations (inverse)

Presence of undo puzzles leading to divergence

Absence of formal guidelines for undo: the correctness of an
undo solution is still a challenging problem
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Related Work

Swap then undo [Prakash]: First selective undo

Put the operation in the end then undo it
(-) swap is not always possible ? conflict() notion that aborts
undo

Undo/Redo [Ressel]

Overcome the conflict by undoing all operations after the one
to undo then undo it and redo these operations
(-) expensive and does not allow to undo il all cases

Ferrié Based on SOCT2 (diverge)

Uno [Weis]

Based on TTF
Generate an operation having an effect undoing the selected
operation

AnyUndo-X & COT [Sun]

Avoid undo properties instead of fulfilling them

ABTU [Shao]: based on ABT (diverge)
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Undo principle

Logging all executed operations is necessary to accomplish an undo
scheme.

each operation op has its inverse operation op.

undo operation opi from the log
L = op1 · op2 · . . . · opi · . . . · opn:

1 Find opi in L;
2 Mark opi as an undone operation: op∗i ;
3 Generate opi ;
4 Calculate op′ = IT ∗(opi , opi+1 · . . . · opn) that

integrates the effect of operations following opi
in L;

5 Exclude the effect of opi from the log by
including the effect of opi inside the sublog
opi+1 · . . . · opn; The sequence of operations
following op∗i is then op′i+1 · . . . · op′n;

6 Execute op′.
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Undo principle

OT Properties

For all op1, op2 and op3 pairwise concurrent operation, IT is
correct iff the following properties are satisfied:

Property TP1:
st · op1 · IT (op2, op1) = st · op2 · IT (op1, op2), for every state
st.

Property TP2: IT (IT (op3, op1), IT (op2, op1)) =
IT (IT (op3, op2), IT (op1, op2)).
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Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;

Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)

op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)

op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Undo Properties

Given a correct transformation function IT and any two operations
op1 and op2:

Property IP1: op1 · op1 ≡ ∅;
Property IP2: IT (IT (op1, op2), op2) = op1;

Property IP3: IT (op1, op
′
2) = IT (op1, op2) where

op′1 = IT (op1, op2)
op′2 = IT (op2, op1)
op1 · op′2 ≡ op2 · op′1



On the Undoability Problem For CAs

Undo Properties

Example

a shared integer register The state of the shared integer register is
altered by two operations:

Inc()

Dec()

IT : IT (opi , opj) = opi

Verifies IP1, IP2 and IP3
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Undo Properties

Example

Consider a shared binary register where two primitive operations
modify the state of a bite from 0 to 1 and vice versa:

Up to turn on the register;

Down to turn off the register;

IT :

IT (Up,Up) = IT (Up,Down) = IT (Down,Up) = Up
IT (Down,Down) = Down

Violates IP1, IP2 and IP3
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Undo Properties

IP3 violation
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Problem Statement

Definition of undoability

Undoability

A set is undoable iff IP1/2/3 are preserved
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Problem Statement

Consistent Collaborative Object (CCO)

Definition of CCO

Consistent Collaborative Object (CCO)

A Consistent Collaborative object is a triplet C = 〈St,Op, IT 〉
such that:

St is the set of object states

Op is the set of primitive operations executed by the user to
modify the object state. This set is characterized by the
following properties:

for every operation op ∈ Op there is unique inverse op ∈ Op
such that op 6= op and st · op · op = st for all states st ∈ St;
for every operation op ∈ Op there exists a state st ∈ St such
that st · op = st ′ where st ′ 6= st.

IT : Op ×Op → Op is a correct transformation function
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Problem Statement

Formal Problem Statement

Formal Problem Statement

Problem: Given a consistent collaborative object C =
〈St,Op, IT 〉, what are the necessary and the sufficient
conditions that C is undoable?
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Problem Statement

Formal Problem Statement

Steps of the proof

Main Theorem

A CCO is undoable iff Op is commutative

To prove the the main theorem, we follow these steps:

1 define commutativity for concurrent operations (using IT )

2 prove that commutativity is necessary for undoability

3 prove tha commutativity is sufficient to reach undoability
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Problem Statement

Commutativity

Definition of commutativity in terms of IT

Given two concurrent operations op1 and op2

Correct IT (TP1 & TP2)

op1 commutes with op2 iff

IT (op1, op2) = op1

IT (op2, op1) = op2
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Problem Statement

Commutativity

Commutativity implies undoability

If Op is commutative then IP2 and IP3 are preserved:

IP2:
IT (IT (op1, op2), op2) = IT (op1, op2) = op1

IP3:
IT (op1, IT (op2, op1)) = IT (op1, op2) = op1
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Problem Statement

Commutativity

Undoability implies Commutativity

Given a CCO C = 〈St,Op, IT 〉, proving that undoability implies
commutativity requires

to find all evaluations of IT that respect TP1/2 and IP1/2/3

Combinatorial problem

We have no information about the result of IT function for a
couple (op1, op2)

We resort to CSP theory to overcome the proof’s difficulty
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Commutativity

CSP Theory
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Problem Statement

Commutativity

Necessity proof by induction on the size of Op

use induction on the size of Op
basic cases of induction proved with a CSP solver

CCO of two operations
CCO of four operations
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Problem Statement

Commutativity

Necessity Proof

basic cases of induction proved with a CSP solver

CCO of two operations: two possible cases produced by our
CSP solver:

∀op1, op2 ∈ Op IT (op1, op2) = op1
Op is 4-periodic and is commutative

CCO of four operations:

∀op1, op2 ∈ Op IT (op1, op2) = op1
Op is 4-periodic and is commutative
Op is 6-periodic and is commutative
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Problem Statement

Commutativity

Conclusion

Contributions:

we address the undo problem from a theoretical point of view
we propose a necessary and sufficient condition for undoing
replicated objects based on OT with respect to inverse
properties IP1/2/3
Use of CSP theory to overcome the difficulty of necessity proof
in order to cover all possible transformation cases
main result: it is impossible to achieve a correct undo for
applications based on non commutative operations

Future work:

generalize the result to cover the special case where an
operation is equal to its inverse
relax our condition and see if the use of idle operations may
ensure undoability
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