
State of the art in using
operation semantics
to boost concurrency

Marek Zawirski
INRIA & UPMC, France
marek.zawirski@lip6.fr

ANR ConcoRDanT & STREAMS, Paris, June 2011

2 Zawirski – SOA in using semantic information to boost concurrency

Part I:
Concurrency-control in synchronous* systems

(multi-threaded applications, multi-cores)

Transactions and abstraction level

3 Zawirski – SOA in using semantic information to boost concurrency

• Transactional system

• Typical requirements:
strict serializability / opacity / dynamic atomicity

• Old problem: efficient concurrency-control
– Studied in DB-context, transactional ADT

• New motivation & context: Transactional Memory, multi-cores

Intuitive observations:

• Low-level primitives (like read/write) limit concurrency

• High-level abstract data types bring more information to use
[Weihl 1988, Gray et al. 1996, Ni et al. 2007,
Koskinen et al. 2010, …]

Coarse-Grained Transactions

4 Zawirski – SOA in using semantic information to boost concurrency

• General model – threads submitting transactions

• Thread accesses thread-local variables or invokes methods on
shared linearizable objects (within transaction)

• Simple language defining thread’s program:

• Generic execution semantics exploiting allowable concurrency
Output: strict serializable & opaque histories

• Defined by nondeterministic automata

beg // transaction

 res:=set.contains(”a”)

 if (res) then

 set.add(”b”)

 else

 set.add(”a”)

cmt

[Koskinen et al. 2010]:

CGT: optimistic execution semantics

5 Zawirski – SOA in using semantic information to boost concurrency

[Koskinen et al. 2010]:

• Snapshot - commited state

Thread A
~Committed trace
(way simplified!)

snapshot

• Works in isolation on snapshot

• Apply changes on
the shared state

CGT: optimistic execution semantics

6 Zawirski – SOA in using semantic information to boost concurrency

[Koskinen et al. 2010]:

snapshot

Thread B Thread A

Commitment guard rule:
• All methods executed by

 must be right-movers
of methods concurrently committed by

•

 (similar relations: left-movers

and both-movers

)

~Committed trace
(way simplified!)

CGT: optimistic execution semantics

7 Zawirski – SOA in using semantic information to boost concurrency

[Koskinen et al. 2010]:

Thread B Thread A
~Committed trace
(way simplified!)

•

 Need to abort!

CGT: optimistic execution semantics

8 Zawirski – SOA in using semantic information to boost concurrency

[Koskinen et al. 2010]:

~Committed trace
(way simplified!)

• Optimistic execution semantics subsumes
most read/write-set based STM implementations!

• I.e. implementation using shared memory object

with methods

and

• Not much space for concurrency at low-level!

CGT: pessimistic execution semantics

9 Zawirski – SOA in using semantic information to boost concurrency

[Koskinen et al. 2010]:

Thread A

• No snapshot, working with live-organism (shared state)!

Thread B

• Local-variable operation

• Method execution guard:
must be left-mover of all methods executed by active
transaction

:

• Commit at any time! (no guard)

CGT: pessimistic execution semantics

10 Zawirski – SOA in using semantic information to boost concurrency

[Koskinen et al. 2010]:

 s.remove(a)

• Undo, e.g. due to deadlock detection

• Pessimistic semantics captures Transactional Boosting implementation
[Koskinen & Herlihy 2008]

• Inherent differences between the two semantics

Turning theory into practice

• How to determine methods moverness/commutativity?

– Automated analysis of object specification and/or code:
some ideas in [Rinard & Diniz 1997, Aleen & Clark 2009]

– Model-checking [Dennis et al. 2004]

– Manual analysis

• How to make use of such commutativity specification?

– Runtime needs to use conflicts (non-movers) detection algorithm
to implement pessimistic or optimistic semantics

– Generic implementations and/or methodology needed!

– E.g. Transactional Boosting [Koskinen & Herlihy 2008]:
turns a linearizable object implementation into a transactional object

– E.g. Commutativity Lattice [Kulkarni et al. 2011]

11 Zawirski – SOA in using semantic information to boost concurrency

Commutativity specifications

12 Zawirski – SOA in using semantic information to boost concurrency

add(a):r1

remove(a):r1

contains(a):r1

Linearizable object Set

[Kulkarni et al. 2011]

Commutativity specifications

13 Zawirski – SOA in using semantic information to boost concurrency

[add(b):r2]σ2 [remove(b):r2]σ2 [contains(b):r2]σ2

[add(a):r1]σ1

[remove(a):r1]σ1

[contains(a):r1]σ1

Specification

for linearizable object Set

[Kulkarni et al. 2011]

 holds true

then m1 and m2 can be swapped in any history

Commutativity specifications

14 Zawirski – SOA in using semantic information to boost concurrency

[add(b):r2]σ2 [remove(b):r2]σ2 [contains(b):r2]σ2

[add(a):r1]σ1

[remove(a):r1]σ1

[contains(a):r1]σ1

Invalid specification

 for linearizable object Set

[Kulkarni et al. 2011]

Commutativity specifications

15 Zawirski – SOA in using semantic information to boost concurrency

[add(b):r2]σ2 [remove(b):r2]σ2 [contains(b):r2]σ2

[add(a):r1]σ1

[remove(a):r1]σ1

[contains(a):r1]σ1

Specification

 for linearizable object Set

[Kulkarni et al. 2011]

Generalization to order on valid specifications:

Commutativity specifications

16 Zawirski – SOA in using semantic information to boost concurrency

[add(b):r2]σ2 [remove(b):r2]σ2 [contains(b):r2]σ2

[add(a):r1]σ1

[remove(a):r1]σ1

[contains(a):r1]σ1

Least specification

 for linearizable object Set

[Kulkarni et al. 2011]

Commutativity specifications

17 Zawirski – SOA in using semantic information to boost concurrency

[add(b):r2]σ2 [remove(b):r2]σ2 [contains(b):r2]σ2

[add(a):r1]σ1

[remove(a):r1]σ1

[contains(a):r1]σ1

Precise specification

 for linearizable object Set

[Kulkarni et al. 2011]

Partially ordered set of valid specifications

 with

 and

constitutes a lattice!

Specif. classes & implementations
Goal: sound and complete online commutativity checker

18 Zawirski – SOA in using semantic information to boost concurrency

[Kulkarni et al. 2011]

Specification
 class

Allowed logic for
condition

Example
condition

Checker
implementation

SIMPLE L1:

 or
conjunctions on

arguments or return
values

(set)

Abstract locking
[Ni et al. 2007],

generalized

ONLINE-
CHECKABLE

L2: Function on
 components

(args,

), but not
both on

 and

(kd-tree)

Method logging

OTHERS L3: L2 + functions
on both

 and

 Method logging

+ undo

IM
P

LEM
EN

TA
TIO

N
 O

V
ER

H
EA

D

P
R

EC
ISIO

N

Findings (theoretical & experimental):
• Overhead of implementation does not pay off in all cases!

• Lattice should be exploited for a particular application and object

Programming in Concurrent Revisions
Limited fork & join model, inspired by Unix processes and revision ctrl

19 Zawirski – SOA in using semantic information to boost concurrency

y

Revision

[Burckhardt & Leijen 2011]

Revision

 Revision

Revision executes in
isolation on a snapshot

Join is blocking, never fails! It triggers per-object three-way-merge:

Merge is an arbitrary function:
))

s={}

s={a}

s={a,b}

s={a}

s={a,b}

s={}

s={b}

Programming in Concurrent Revisions

20 Zawirski – SOA in using semantic information to boost concurrency

y

Revision

[Burckhardt & Leijen 2011]

Revision

 Revision

s={}

s={a}

s={a,b}

s={a}

s={a,b}

s={}

s={b}

Limited fork & join model, inspired by Unix processes and revision ctrl

Interesting properties:

• Joined revision is never “aborted”

• Merge is custom, may union the results, give priority to a particular revision etc.

• “Abelian” objects have sequential merges (e.g. counter with add() operation)

• Computation is deterministic

Implementing linearizable object

• Hot topic in the age of multi/many-cores:

– Lock-free implementations; some general techniques [Herlihy&Shavit]:
exchangers (op. inverses), elimination arrays/trees, combiners…

– For hot-spot objects, linearizable implementation may be too costly!

• k-linearizable implementations: k-FIFO [Payer et al. 2011]

21 Zawirski – SOA in using semantic information to boost concurrency

a

b

c

Thread A Thread B Thread C Thread D

Load Balancer

p instances of FIFO

• Outcome: better performance, but up to k-reorderings: k=f(p, LB quality)

• Duality of specification: altered sequential specification or linearizability

k
-F

IF
O

22 Zawirski – SOA in using semantic information to boost concurrency

Part II:
Replication in asynchronous systems

Systems using operation constraints

• High-level operations with constraints

• System tries to ensure operations constraints

• Might end-up in the conflict, application is made aware of a
problem and assisted in resolution

• Conflict-resolution typically requires coordination & rollback

• Working systems:
– Telex [Pierpaolo’s presentation, paper 2009] and older systems

– Similar ideas in video authoring [Novikov et al. 2003] and
CoAct system [Klingemann & Tesch 1996]

23 Zawirski – SOA in using semantic information to boost concurrency

(Hidden) Commutativity at the extreme

24 Zawirski – SOA in using semantic information to boost concurrency

Replica 1 Replica 2

V1: “ALICE”

Update(1, “O”)
V1’: “OLICE”

Insert’(1, “P”)
V1’’: “POLICE”

V2: “ALICE”

Insert(1, “P”)
V2’: “PALICE”

Update'(2, “O”)
V2’’: “POLICE”

Here: TF modifies an index

V1’’ = V2’’

• Operational Transformation:
Operation performed locally
without blocking & propagated

• Transformation Function used against
concurrent operations:
 TF(o1, o2) = o1’

• Integration algorithm and TF
properties ensure consistency

• Conditions for “consistent” TF
[Ressel et al. 1996]
TP1 - for centralized integration alg.
TP2 – for decenetralized system

• TP2 issues & TTF [Oster et al.]

Commutative Replicated Data Types

• Explicit commutativity at the extreme:all operations commute

• 1st era of CRDTs:
– LWW [Thomas 1979]

– Dictionary & Log [Wuu & Bernstein 1984] – apparent commutativity

• 2nd era of CRDTs:
– WOOT: operations made non-trivially commutative [Oster et al. 2006]

– RADT: LWW + causality [Roh et al. 2011, 2006]

– Treedoc: the concept + core-nebula [Preguiça & Shapiro et al. 2007-10]

– Logoot: undo, hierarchical extension [Weiss et al. 2009, 2010]

• The generic framework + various types portfolio :
– Conflict-free Replicated Data Types [Shapiro et al. 2011]

– Convergent Data Types [Baquero & Moura 1999] - equivalent to CRDTs

25 Zawirski – SOA in using semantic information to boost concurrency

Alternative ways?

• Keep storage simple, leave the burden on the application

– Dynamo [DeCandia et al. 2007], Riak, Cassandra

• Reduce RDBMS guarantees and/or features to scale better:
– PIQL [Armbrust et al. 2010], MegaStore [Baker et al. 2011]

• Use monotonic logic programming model to encourage
creating pieces of program can run concurrently:

– Bloom [Alvaro et al. 2011]

26 Zawirski – SOA in using semantic information to boost concurrency

Consistency and self-stabilization?

• Enforcing invariants back after they get broken:

– r-operators [Ducourthial et al. 2001-2005]

27 Zawirski – SOA in using semantic information to boost concurrency

