Asynchronous rebalancing
of a replicated tree

Marek Zawirski INRIA & UPMC, France
Marc Shapiro INRIA & LIP6, France
Nuno Preguica UNL, Portugal

marek.zawirski@lip6.fr

ANR ConcoRDanT & STREAMS, Paris, June 2011

Summary

Overview of Treedoc:
— Abstractly, always-responsive replicated sequence

— Built as a replicated ordering tree

Problem faced:

— Tree rebalanced on some replicas,
while concurrently updated on others

Approach:

— Catch-up protocol to integrate rebalance on all replicas

Novel catch-up algorithm using symbolic positions

Treedoc — a replicated sequence

replica,
0 . .
* Replicated representation:
— Grow-only binary tree
Total order “<”: _ stable, unique position ids
infix traversal Q _ 1

<)
G 0 Q * Sequence of atoms:

— Ops: read, addAt, removeAt

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree

replica,

replica,

Treedoc — a replicated sequence

replica, replica,
m m
0 0 0 replica,

{_A_\
o o /N,
0-0-0 .,/0\.,

addAt(
[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 4

)

Treedoc — a replicated sequence

replica, replica,

0 0 e 0 replica;

0 1
addAt(10,@) @ <@<Q (@ -10) A

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 5

Treedoc — a replicated sequence

replica, replica,

replica;

addAt(10, @)
removeAt(1, Q)

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree

Treedoc — a replicated sequence

replica, replica,

replica,

addAt(10, @)
removeAt(1, Q)

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree

Treedoc — a replicated sequence

replica, replica,

* Operation-based replication:

0
— Immediate local execution
— Propagate (cbcast) & replay 0
G G 9 replica,
0
addAt(10, @)
removeAt(1, 0) 0

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree

Treedoc — a replicated sequence
replica, replica,
* Operation-based replication:

— Immediate local execution

— Propagate (cbcast) & replay

0
addAt(00, Q)
G G n e replica,
addAt(00, @)
0 1
0

?

[
[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 9

Treedoc — a replicated sequence
replica, replica,
* Operation-based replication:

— Immediate local execution

— Propagate (cbcast) & replay ¢

addAt(00, ()
Q00006

addAt(00, Q)
addAt(00, Q)

replica,

Predefined order:
red <. green <_blue...

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 10

Treedoc — a replicated sequence
replica, replica,
* Operation-based replication:

— Immediate local execution

— Propagate (cbcast) & replay
— Concurrent commute

— Eventually consistent

000006

Predefined order:
red <. green <_blue...

[Shapiro, Preguica et. al, 2007, 2009]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 11

The tree rebalance problem

* With time tree gets worse and worse
— Unbalanced, empty nodes, lot of colors...
— Various negative impacts

* Tree rebalance:
— Create minimal tree from nonempty nodes

— Keep order “<“

aoup|pqal (@

— Use single color (white)
— New ids epoch (rectangles), incompatible

0 1

* Challenge:

— Ensuring identical rebalance across replicas
without costly consensus or lost updates

>

The core-nebula architecture

ldea: limit consensus to a smaller number of replicas
[Letia et. al, 2009]

Divide replicas into two disjoint sets:

CORE NEBULA
* astable group e sites join & leave, dynamic
° executetree operations * generate tree operations

& agree on rebalance * |earns about rebalance

v’ easier agreement e perform catch-up protocol

to integrate conc. changes
v" never blocked

Rebalance in core, catch-up from nebula

core; nebula, nebula, nebula,
0 1 0 1 0 1 0 1
1 1 1 1
addAt(11, @)

* Any pair of replicas can exchange
operations in the same epoch

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 14

Rebalance in core, catch-up from nebula

core; nebula, nebula, nebula,
0 1 0 1 0 1 0 1
1 1 1 1
removeAt(1, Q)

* Any pair of replicas can exchange
operations in the same epoch

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 15

Rebalance in core, catch-up from nebula

core; nebula, nebula, nebula,
0 1 0 1 0 1 0 1
1 1 1 1
removeAt(T,”)

* Any pair of replicas can exchange
operations in the same epoch

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 16

Rebalance in core, catch-up from nebula

core, nebula, nebula, nebula,

*

15
'
ey
| S addAt(10,) addAt(01, ()

state | §
1 O
1 M
\ 4
S * Any pair of replicas can exchange

9 operations in the same epoch
. L * rebalance@core initiates new epoch

* rebalance@core and operations@core

inherently concurrentto ops@nebula!
addAt(00, i)

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 17

Rebalance in core, catch-up from nebula

core, nebula, nebula, nebula,

*

“ans®

. addAt(10,) addAt(01, ()
! X’\ * Pairwise catch-up moves

M nebula replica to the next epoch
S

state

a3UD|pQga.

0 P,
L /
0

addAt(00, [ill)

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 18

Rebalance in core, catch-up from nebula

core; nebula, nebula, nebula,

* Pairwise catch-up moves
nebula replica to the next epoch

— replay ops until rebalance state

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 19

Rebalance in core, catch-up from nebula

core; nebula; nebula, nebula,

*

'3 2
H E
state E § E _g}' Pairwise catch-up moves
M Y= nebula replica to the next epoch
0 > 0 > — replay core ops until rebalance state
1 1 — replay rebalance on nodes subset
0 1 — translate into the new tree nodes

5 of nebula operations || rebalance

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 20

Naive translation algorithm(s)

core; nebula, nebula, nebula,

*

e
I 0 o
rebalance! g |
state | 3 !
| O -
1 M !
\ 4 v
) S) S| « Naive translation algorithm:
Create new position respecting old
. L L . order observed at the nebula replica

G <Q<e ~[Letia et. al, 2009]
L|< n<

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 21

Naive translation algorithm(s)

core; nebula, nebula, nebula;

dn-y230o

v
s

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 22

Naive translation algorithm(s)

core; nebula, nebula, nebula;

...............
3

*

LR
: R s T S 1 Q
rebalance! S
e~ (@)
state | 3 | >
| O I
v VS

S S

0 0

000
23

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree

Naive translation algorithm(s)

core; nebula, nebula, nebula;

*

S
@ ': ﬁ
S 3
state | S =
3 £
v Q"O
S S
0 0
L L L
0 1 1
addat(01, [B) addAt(01, [[])

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 24

Naive translation algorithm(s)

core; nebula, nebula, nebula;

...............
3

*

|
| O 1 Q
1 Q =
state | S =

i Q |
v v
S Order observed at S

0 nebula, broken!

L

0 UR P,

2 <[]

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 25

Towards correct translate: requirements

1. Order-preserving
— Forevery @,ﬂ the order is preserved between epochs:

Q<0 - O <M

2. Deterministic
— Forevery @ , hebula, nebula, @ is translated identically:

B4 @nebula; = @nebula

3. Non-disruptive
— Forevery n created by addAt and created by translate:
X
Solution: designate all cases in advance using rebalance state!

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 26

R-Translate: abstract view (simplified)

core; nebula; nebula, nebula;

*

» Set of potential input to translate:
— Ordered by “<“ relation
— Infinite => hard to designate cases
* Set of roots of potential input:
— Ordered and finite!
— Enough to consider only roots

— lgnore colors (equivalence classes)

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 27

R-Translate & symbolic positions

core; nebula, nebula, nebula;

rebalance i
state v
S
s o/
— Designated p05|t|on for
. L every potentlal translate |-
— [X]<ixzi <x2i ... <xi <[Y e
— Allocated for rebalance -IT-'-I- L2 -’72 L4

nodes in proper number
— Materialized on translate

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 28

R-Translate & symbolic positions

core; nebula, nebula, nebula;

*

.

...............
3

rebalance i R-Translate: i
state v v
S — Right child of S

0 rebalance node y

L
|L1|L2i13]L4:
1

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 29

R-Translate & symbolic positions

core, nebula 1 nebula, nebula;

rebalance i ! R-Translate: i
state v v _ v
S S — Child of empty S

0 y rebalance node y

L L.t — Etc. Lt

O T e T
L1jL2L3i4 L7314
e 1

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 30

R-Translate & symbolic positions

core; nebula, nebula,

’?@H/HVéﬁt(—r,D)

state

S

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 31

R-Translate & symbolic positions

core; nebula, nebula,

.

nebula;

* .
o*

* \d *

""""""""""""""

llllllll

...............
3

I Taans "’: -
rebalance i i
state v v
S S

‘e
‘e
3

‘e
3
‘e
*

‘e
3
‘e
*

- L2z

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 32

R-Translate & symbolic positions

core; nebula, nebula, nebula;

...............
3

*

rebalance i
state v
S

‘e
‘e
3

‘e
3
‘e
*

‘e
‘e
3

Zawirski, Shapiro, Preguica - Asynchronous rebalancing of a replicated tree 33

R-Translate: symbolics implementation

S S
o/ o
implementation
I- --------------------- > L
L1]L213]L4: o
0
* Empty nodes are necessary! 118 213

* Do we still discard more empty nodes th

> O(log i)

L4

Hil R

an introduce?

— No update concurrentto rebalance => no empty nodes
T1: No new operations => tree is minimal in 2 epochs

— Concurrent update => create only empty nodes on the path

— Encode symbolic positions as a balanced tree & other opt.

C1: O(n) symbolics for n-size tree.

C2: O(n) utilized symbolics create at most O(n) empty nodes

Summary

Problem faced:

— Tree rebalanced in some replicas (new ids),
while concurrently updated in others (using old ids)

Approach:

— Catch-up protocol to integrate rebalance on all replicas
Novel R-translate algorithm:

— ldentify and utilize rebalance state, use symbolic positions

— Prototype catch-up implementation

Future work?
— Evaluation of symbolic positions implementation

— Formal order-preservation proof

Appendix: the unbalance problem

Use sparse tree and heuristic to assign PosID [Weiss et. al, ‘09]
or Treedoc with similar heuristics [Shapiro, Preguica et. al, ‘09]

— Work on evaluated workload; at the cost of possible anomaly
Use list instead of a tree [Roh et. al, ‘10]
— Different costs and convergence characteristics?
Rebalance the tree [Shapiro, Preguica et. al, ‘09]
— System-wide consensus; inherent limitations
— The core-nebula idea [Letia et. al ‘09]; incorrect translation
This work brings:
— More formalization of the core-nebula for asynchronous systems
— Flaws revealed in naive algorithms
— Translation requirements statement

— Novel R-translate algorithm and first prototype implementation

